矩阵的转置,逆矩阵,行列式的计算,伴随矩阵等

本文介绍了矩阵的转置、逆矩阵和行列式的概念及计算方法。重点讨论了伴随矩阵的由来及其与逆矩阵的关系,通过行列式的性质推导出矩阵可逆的充要条件,并探讨了矩阵分块运算的规则和效率优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

行列式的操作:
在这里插入图片描述
逆矩阵:就是两个矩阵相乘是单位矩阵
在这里插入图片描述
对角矩阵相乘:就是对角线元素相乘
在这里插入图片描述
当两个矩阵相乘不是单位矩阵:
在这里插入图片描述

伴随矩阵:是有代数余子式拼成的
为什么伴随矩阵会出现?为什么伴随矩阵的形式是这样的?
因为行列式的乘法:
根据矩阵的乘法可以看到:
行列式是一个数字,当改行元素跟本身的代数余子式相乘积的情况下,才能非0。绝大情况下是0,只有少数部分情况对上的时候才非0。
在这里插入图片描述
所以伴随矩阵出现之后,可以将原来的矩阵变成对角矩阵,而且对角线元素是该剧真的行列式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值