行列式的操作:
逆矩阵:就是两个矩阵相乘是单位矩阵
对角矩阵相乘:就是对角线元素相乘
当两个矩阵相乘不是单位矩阵:
伴随矩阵:是有代数余子式拼成的
为什么伴随矩阵会出现?为什么伴随矩阵的形式是这样的?
因为行列式的乘法:
根据矩阵的乘法可以看到:
行列式是一个数字,当改行元素跟本身的代数余子式相乘积的情况下,才能非0。绝大情况下是0,只有少数部分情况对上的时候才非0。
所以伴随矩阵出现之后,可以将原来的矩阵变成对角矩阵,而且对角线元素是该剧真的行列式。
行列式的操作:
逆矩阵:就是两个矩阵相乘是单位矩阵
对角矩阵相乘:就是对角线元素相乘
当两个矩阵相乘不是单位矩阵:
伴随矩阵:是有代数余子式拼成的
为什么伴随矩阵会出现?为什么伴随矩阵的形式是这样的?
因为行列式的乘法:
根据矩阵的乘法可以看到:
行列式是一个数字,当改行元素跟本身的代数余子式相乘积的情况下,才能非0。绝大情况下是0,只有少数部分情况对上的时候才非0。
所以伴随矩阵出现之后,可以将原来的矩阵变成对角矩阵,而且对角线元素是该剧真的行列式。