定义
欧几里得空间是古希腊数学家欧几里得建立的角和空间距离的联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,并接着分析三维物体的“立体几何”。这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做n维欧几里得空间(有时简称n维空间)或有限维实内积空间。
直觉概述
有一种方法论把欧几里得平面看做满足可依据距离和角表达的特定联系的点所成的集合。其一是平移,它意味着移动这个平面就使得所有点都以相同方向移动相同的距离。其二是关于在这个平面中固定点的旋转,其中在平面上的所有点关于这个固定点旋转相同的角度。欧几里得几何的一个基本原则是,如果通过一序列的平移和旋转可以把一个图形变换成另一个图形,平面的两个图形(也就是子集)应被认为是等价的(全等)。
为了使这些在数学上精确,必须明确定义距离、角、平移和旋转的概念。标准方式是定义欧几里得平面为装备了内积的二维实数的向量空间。有着: