Educational Codeforces Round 52 C. Make It Equal
题意:
给你一些从左到右摆放的n堆正方体,每堆正方体由一些正方体堆叠而成,现在每次可以沿着某个高度砍一刀,这个高度之上的正方体都会被砍掉,要求是掉落的正方体个数不超过k,问最少砍多少刀能让所有正方体高度相同。
做法:
首先可以桶排序,高度从高到低统计出每种高度正方体高度的个数,之后从高到低贪心的看是不是能砍即可。时间复杂度
O
(
n
log
n
)
O(n \log n)
O(nlogn)
但是楼主拉线段树专题不小心看到了这道题,于是给出线段树的做法。首先依旧是统计出每种高度的正方体的个数,之后我们统计前缀和,之后问题就转换为区间[1,200000]
内查找小于k的最大值,找到之后区间更新即可。时间复杂度
O
(
n
log
n
)
O(n \log n)
O(nlogn),但是这个做法不太优雅,要注意很多细节。
两个做法都要注意不需要砍的情况。
代码:
做法1:
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 4e5+5;
ll a[maxn],b[maxn],sum[maxn];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+1+n);
if(a[1]==a[n])
{
puts("0");
return 0;
}
int pos=1;
for(int i=1;i<=n;i++)
{
while(pos<=200000&&pos<=a[i])
{
sum[pos]=(n-i+1);
pos++;
}
}
for(int i=1;i<=200000;i++) b[i]=sum[200000-i+1];
pos=1;
ll cnt=0;
int ans=0;
while(pos<=200000)
{
if(cnt+b[pos]<=k)
{
cnt+=b[pos];
pos++;
if(pos==200001) ans++;
}
else
{
ans++;
if(b[pos]==n) break;
cnt=b[pos];
pos++;
}
}
printf("%d\n",ans);
return 0;
}
做法2:
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef pair<ll,ll> pll;
const int maxn = 4e5+5;
struct T
{
int l,r,mid;
ll add,val;
}tree[maxn<<2];
ll a[maxn];
ll sum[maxn];
ll b[maxn];
void up(int rt)
{
tree[rt].val=min(tree[rt<<1].val,tree[rt<<1|1].val);
return;
}
void down(int rt)
{
if(tree[rt].add!=0)
{
ll tmp=tree[rt].add;
tree[rt<<1].val+=tmp;
tree[rt<<1|1].val+=tmp;
tree[rt<<1].add+=tmp;
tree[rt<<1|1].add+=tmp;
tree[rt].add=0;
}
}
void build(int rt,int l,int r)
{
tree[rt].l=l;
tree[rt].r=r;
tree[rt].add=0;
if(l==r)
{
tree[rt].val=b[l];
return ;
}
int mid=tree[rt].mid=l+r>>1;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
up(rt);
}
pll query(int rt,int l,int r,ll val)
{
if(tree[rt].val>val) return pll(-1,-1);
if(tree[rt].l==tree[rt].r) return pll(tree[rt].l,tree[rt].val);
down(rt);
if(tree[rt<<1|1].val<=val) return query(rt<<1|1,l,r,val);
else return query(rt<<1,l,r,val);
}
int main()
{
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
sort(a+1,a+1+n);
if(a[1]==a[n])
{
puts("0");
return 0;
}
int pos=1;
for(int i=1;i<=n;i++)
{
while(pos<=200000&&pos<=a[i])
{
sum[pos]=(n-i+1);
pos++;
}
}
for(int i=1;i<=200000;i++) b[i]=sum[200000-i+1];
for(int i=1;i<=200000;i++) b[i]=b[i-1]+b[i];
build(1,1,200000);
pll tt=pll(0,0);
int ans=0;
ll cc=0;
while(true)
{
tt=query(1,1,200000,k);
ans++;
tree[1].val-=tt.second;
tree[1].add-=tt.second;
if(tt.first==200000) break;
cc+=tt.second;
ll tm=b[tt.first+1]-cc;
if(tm==n) break;
}
printf("%d\n",ans);
return 0;
}