【Educational Codeforces Round 63 E. Guess the Root】交互+高斯消元

链接

Educational Codeforces Round 63 E. Guess the Root

题意

现在有 11 11 11个数, a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 a_0,a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8,a_9,a_{10} a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10, 0 ≤ a i ≤ 1 0 6 + 2 0 \leq a_i \leq 10^6+2 0ai106+2
他们组成一个函数 f x = a 0 + a 1 × x + a 2 × x 2 + . . . a k × x k f_x = a_0+a_1×x+a_2×x^2+...a_k×x^k fx=a0+a1×x+a2×x2+...ak×xk
现在你可以给出 50 50 50个询问,系统会返回 f x m o d ( 1 0 6 + 3 ) f_x mod (10^6+3) fxmod(106+3).
50 50 50次询问之后,你要给出一个 x x x,使 f x ≡ 0 m o d    ( 1 0 6 + 3 ) f_x \equiv 0 \mod (10^6+3) fx0mod(106+3).

做法

给出不同的11个x可以得到11个方程,现在有11个方程11个未知数,高斯消元求解即可。

求解之后得到 a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 a_0,a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8,a_9,a_{10} a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,由于答案要求的范围是 [ 0 , 1 e 6 + 2 ] [0,1e6+2] [0,1e6+2]

我们只需要枚举并检验 f x ≡ 0 m o d    ( 1 0 6 + 3 ) f_x \equiv 0 \mod (10^6+3) fx0mod(106+3),由于这个不消耗询问次数,所以在11次询问后就可以确定答案。

代码

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<map>
#include<bitset>
#include<stack>
#include<set>
#include<vector>
#include <time.h>
#include<string.h>
using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef pair <int, int> pii;
typedef pair <ll, ll> pll;
typedef pair <ll, int> pli;
typedef pair <db, db> pdd;

const int maxn = 20;
const int Mod=1000003;
const int p = 1000003;
const int INF = 0x3f3f3f3f;
const ll LL_INF = 0x3f3f3f3f3f3f3f3f;
const double e=exp(1);
const db PI = acos(-1);
const db ERR = 1e-10;

#define Se second
#define Fi first
#define pb push_back
#define ok cout<<"OK"<<endl
#define dbg(x) cout<<#x<<" = "<< (x)<< endl
#define dbg2(x1,x2) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<endl
#define dbg3(x1,x2,x3) cout<<#x1<<" = "<<x1<<" "<<#x2<<" = "<<x2<<" "<<#x3<<" = "<<x3<<endl
ll a[maxn][maxn];  //增广矩阵
ll x[maxn];        //解集
ll pow_(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b&1) ans=ans*a%Mod;
        b>>=1;
        a=a*a%Mod;
    }
    return ans;
}
int n=11;
void gauss()
{
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
            if(i!=j)
            {
                long long tmp=a[i][i]*pow_(a[j][i],p-2)%p;
                for(int k=1;k<=n+1;k++) a[j][k]=a[i][k]-a[j][k]*tmp%p,a[j][k]=((a[j][k]%p)+p)%p;
            }
    }
    for(int i=1;i<=n;i++)
    {
         a[i][n+1]*=pow_(a[i][i],p-2),a[i][n+1]%=p;
         x[i]=a[i][n+1];
    }

}
int main()
{
    for(int i=1;i<=n;i++)
    {
        printf("? %d\n",i);
        fflush(stdout);
        int ans;
        scanf("%d",&ans);
        a[i][12]=ans;
        a[i][1]=1;
        for(int j=2;j<=n;j++) a[i][j]=1LL*a[i][j-1]*i%Mod;
    }
    gauss();
    int flag=0;
    for(int i=0;i<Mod;i++)
    {
        ll tt=0;
        for(int j=1;j<=11;j++)
        {
            tt=(tt+x[j]*pow_(i,j-1)%Mod)%Mod;
        }
        if(tt==0)
        {
            flag=1;
            printf("! %d\n",i);
            fflush(stdout);
            break;
        }
    }
    if(flag==0)
    {
        printf("! -1\n");
        fflush(stdout);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值