Adversarial inverse reinforcement learning(AIRL)

本文详细介绍了对抗逆强化学习(AIRL)的原理,从IRL的目标出发,探讨了如何通过最小化KL散度来适应重要性采样器,以减少方差,并解释了如何从交叉熵损失中计算D函数,最后得出新的期望奖励表达式。AIRL旨在通过明确的奖励函数改进GAIL,使学习过程更加清晰有效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Overview

For imitation learning, it is easy for us to have a fit on the expert behavior, However when we encounter a new situation, we can’t solve the problem. So we imagine that there is an expert strategy in the real world, and this expert strategy will give a reward function to guide our agents to learn. AIRL is based on the past GAIL. In GAIL, we directly use GAN to fit the behavior of the agent to the expert behavior, and do not directly give the reward function. This behavior will lead to our learning is not clear and not good. Migration, so we will record the function of the discriminator in GAN as D, and use D to represent our reward function. Below I will write in detail, how this is derived.

the goal of the IRL

Firstly, we define a distribution p θ ( τ ) p_\theta(\tau) pθ(τ). in another word, it is the expectation for the accumulated over the expert trajectory. so it can be wrote in this form. And D is the demonstrations of the expert.

p θ ( τ ) ∝ p ( s 0 ) ∏ t = 0 T − 1 p ( s t + 1 ∣ s t , a t ) e r θ ( s t , a t ) p_\theta(\tau)\propto p(s_0)\prod_{t=0}^{T-1}p(s_{t+1}|s_t,a_t)e^{r_{\theta}(s_t,a_t)} pθ(τ)p(s0)t=0T1p(st+1st,at)erθ(st,at)

the goal of IRL can been seen as training a generative model over trajectories as:

max ⁡ θ { J ( θ ) } = max ⁡ θ E τ ∼ D [ log ⁡ p θ ( τ ) ] \max \limits_{\theta}\{J(\theta)\}=\max \limits_{\theta}E_{\tau\sim D}[\log p_{\theta}(\tau)] θmax{ J(θ)}=θmaxEτD[logpθ(τ)]

Then we calculate the gradient with respect to θ \theta θ(where p θ , t = ∫ s t ′ ≠ t , a t ′ ≠ t p θ ( τ ) p_{\theta,t}=\int_{s_{t'}\neq t,a_{t'}\neq t}p_{\theta(\tau) \qquad} pθ,t=st=t,at=tpθ(τ) denote the state-action marginal at time t):
∂ ∂ θ J ( θ ) = ∑ t = 0 T E D [ ∂ ∂ θ r θ ( s t , a t ) ] − E p θ , t [ ∂ ∂ θ r θ ( s t , a t ) ] \frac{\partial}{\partial \theta} J(\theta)=\sum_{t=0}^{T} E_{\mathcal{D}}\left[\frac{\partial}{\partial \theta} r_{\theta}\left(s_{t}, a_{t}\right)\right]-E_{p_{\theta, t}}\left[\frac{\partial}{\partial \theta} r_{\theta}\left(s_{t}, a_{t}\right)\right] θJ(θ)=t=0TED[θrθ(st,at)]Epθ,t[θ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值