请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一格开始,每一步可以在矩阵中向左、右、上、下移动一格。如果一条路径经过了矩阵的某一格,那么该路径不能再次进入该格子。例如,在下面的3×4的矩阵中包含一条字符串“bfce”的路径(路径中的字母用加粗标出)。
[["a","b","c","e"],
["s","f","c","s"],
["a","d","e","e"]]
但矩阵中不包含字符串“abfb”的路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入这个格子。
示例 1:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
输出:true
示例 2:
输入:board = [["a","b"],["c","d"]], word = "abcd"
输出:false
提示:
1 <= board.length <= 200
1 <= board[i].length <= 200
解法一:DFS
算法原理:
深度优先搜索: 可以理解为暴力法遍历矩阵中所有字符串可能性。DFS 通过递归,先朝一个方向搜到底,再回溯至上个节点,沿另一个方向搜索,以此类推。
剪枝: 在搜索中,遇到 这条路不可能和目标字符串匹配成功 的情况(例如:此矩阵元素和目标字符不同、此元素已被访问),则应立即返回,称之为 可行性剪枝 。
算法剖析:
递归参数: 当前元素在矩阵 board 中的行列索引 i 和 j ,当前目标字符在 word 中的索引 k 。
终止条件:
返回 falsefalse : ① 行或列索引越界 或 ② 当前矩阵元素与目标字符不同 或 ③ 当前矩阵元素已访问过 (③ 可合并至 ② ) 。
返回 truetrue : 字符串 word 已全部匹配,即 k = len(word) - 1 。
递推工作:
标记当前矩阵元素: 将 board[i][j] 值暂存于变量 tmp ,并修改为字符 '/' ,代表此元素已访问过,防止之后搜索时重复访问。
搜索下一单元格: 朝当前元素的 上、下、左、右 四个方向开启下层递归,使用 或 连接 (代表只需一条可行路径) ,并记录结果至 res 。
还原当前矩阵元素: 将 tmp 暂存值还原至 board[i][j] 元素。
回溯返回值: 返回 res ,代表是否搜索到目标字符串。
图解中,从每个节点 DFS 的顺序为:下、上、右、左。
复杂度分析:
M,N 分别为矩阵行列大小, K为字符串 word 长度。
时间复杂度 O(3^K *MN) : 最差情况下,需要遍历矩阵中长度为 K字符串的所有方案,时间复杂度为 O(3^K);矩阵中共有 MN 个起点,时间复杂度为 O(MN)。
方案数计算: 设字符串长度为K,搜索中每个字符有上、下、左、右四个方向可以选择,舍弃回头(上个字符)的方向,剩下 3种选择,因此方案数的复杂度为 O(3^K) 。
空间复杂度 O(K): 搜索过程中的递归深度不超过K,因此系统因函数调用累计使用的栈空间占用 O(K)(因为函数返回后,系统调用的栈空间会释放)。最坏情况下 K =MN ,递归深度为 MN ,此时系统栈使用 O(MN)的额外空间。
class Solution {
public boolean exist(char[][] board, String word) {
char[] words = word.toCharArray();
for (int i=0; i<board.length; i++) {
for (int j=0; j<board[0].length; j++) {
if (dfs(board, words, i, j ,0)) return true;
}
}
return false;
}
boolean dfs(char[][] board, char[] word, int i, int j, int k) {
if (i<0 || i>=board.length || j<0 || j>=board[0].length || board[i][j] != word[k]) {
return false;
}
if (k == word.length -1) return true;
char temp = board[i][j];
board[i][j] = '/';
boolean res = dfs(board, word, i+1, j, k+1) || dfs(board, word, i-1, j, k+1) ||
dfs(board, word, i, j+1, k+1) || dfs(board, word, i, j-1, k+1);
board[i][j] = temp;
return res;
}
}