1.基于深度学习的轴承故障诊断--凯斯西储大学轴承数据集介绍

本章主要介绍来自凯斯西储大学的轴承实验数据

下载地址

西储大学下载地址:http://csegroups.case.edu/bearingdatacenter/pages/download-data-file

该网站提供对轴承和轴承故障的测试数据。使用2马力信实电机进行了实验,并在电机轴承附近和远离电机轴承的位置测量了加速度数据。这些网页是独特的,因为电机的实际测试条件以及轴承故障状态已被仔细记录为每个实验。

采用电火花加工(EDM)对电机轴承进行故障诊断。分别在内滚道、滚动体(球体)和外滚道引入直径为0.007英寸至0.040英寸的故障。将故障轴承重新安装到试验电机中,记录0-3马力(电机转速为1797-1720RPM)的电机负载的振动数据。

项目历史

为了验证新技术、新理论和新技术,经常需要进行实验。这些电机轴承试验是为了表征在洛克韦尔开发的电机轴承状态评估系统IQ PreAlert的性能而开始的。从最初的动力开始,实验程序已经扩展以提供马达性能数据库,该数据库可用于验证和/或改进许多马达状态评估技术。最近或当前正在使用这个数据库的一些项目包括:Winsnode状态评估技术、基于模型的诊断技术和电机速度确定算法。

Apparatus & Procedures

如上面的图1所示,测试台由2马力的电机(左)、扭矩传感器/编码器(中心)、测力计(右)和控制电子(未示出)组成。测试轴承支撑电机轴。采用电火花加工将单点故障引入试验轴承,故障直径为7密耳、14密耳、21密耳、28密耳和40密耳(1密耳=0.001英寸)。参见故障深度的故障规范。对于7、14和21密耳的直径故障,使用SKF轴承,对于28密耳和40密耳的故障使用NTN等效轴承。驱动端和风扇端轴承规范,包括轴承几何形状和缺陷频率列在轴承规范。

使用加速度计收集振动数据,加速度计连接到具有磁性基底的壳体。加速度计被放置在电机壳体的驱动端和风扇端的十二点位置。在一些实验中,加速度计也安装在电机支撑基板上。使用16通道DAT记录器采集振动信号,并在Matlab环境中进行后处理。所有数据文件都在Matlab(*.Mat)格式中。以每秒12000个样本收集数字数据,以每秒48000个样本收集驱动端轴承故障。使用扭矩传感器/编码器收集速度和马力数据,并用手记录。

外滚道故障是静止故障,因此故障相对于轴承负载区的布置直接影响电机/轴承系统的振动响应。为了量化这种影响,在三点钟(直接在加载区)、六点钟(与负载区正交)和12点钟,对具有外滚道故障的风扇和驱动端轴承进行了实验。

下载数据文件

数据收集的正常轴承,单点驱动端和风扇端部缺陷。数据收集在12000个样本/第二次和48000个样本/秒的驱动端轴承实验。所有风扇端轴承数据收集在12000个样本/秒。

数据文件采用Matlab格式。每个文件包含风扇和驱动端振动数据以及电机转速。对于所有文件,变量名称中的以下项表示:

DE去驱动端加速度计数据

Fe端加速度计数据

BA基加速度计数据

时间-时间序列数据

测试期间的RPM - RPM
 

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 8
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 10
    评论
以下是使用 PyTorch 实现 GRU 模型对美国凯斯西储大学轴承故障数据集进行故障诊断的示例代码: ```python import torch import torch.nn as nn import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler # 读取数据 data = pd.read_csv('K001_1_48k_0_12hp_B_C3_0.csv', header=None) data = data.values[:, 1] data = data.reshape(-1, 1) # 数据预处理 scaler = MinMaxScaler(feature_range=(-1, 1)) data_scaled = scaler.fit_transform(data) # 定义超参数 input_size = 50 hidden_size = 32 num_layers = 2 output_size = 1 learning_rate = 0.001 num_epochs = 100 # 创建训练数据集 X = [] y = [] for i in range(input_size, len(data_scaled)): X.append(data_scaled[i-input_size:i]) y.append(data_scaled[i]) X, y = np.array(X), np.array(y) # 划分训练集和测试集 train_size = int(len(data_scaled) * 0.8) X_train, X_test = X[:train_size], X[train_size:] y_train, y_test = y[:train_size], y[train_size:] # 创建数据加载器 train_data = torch.utils.data.TensorDataset(torch.from_numpy(X_train).float(), torch.from_numpy(y_train).float()) train_loader = torch.utils.data.DataLoader(train_data, batch_size=32, shuffle=True) # 定义 GRU 模型 class GRU(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size): super(GRU, self).__init__() self.hidden_size = hidden_size self.num_layers = num_layers self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x, h0): out, h = self.gru(x, h0) out = self.fc(out[:, -1, :]) return out, h model = GRU(input_size, hidden_size, num_layers, output_size) # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(train_loader): # 前向传播 outputs, _ = model(inputs, None) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 10 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 预测测试集 with torch.no_grad(): inputs = torch.from_numpy(X_test).float() outputs, _ = model(inputs, None) predicted = scaler.inverse_transform(outputs.numpy()) actual = scaler.inverse_transform(y_test) # 计算 R2 得分 from sklearn.metrics import r2_score print('R2 score:', r2_score(actual, predicted)) ``` 在上述代码中,我们首先读取了凯斯西储大学轴承故障数据集,并进行了数据预处理。然后,我们定义了超参数,包括输入大小、隐藏层大小、层数、输出大小、学习率和训练轮数。接着,我们创建了训练数据集和数据加载器,并定义了 GRU 模型、损失函数和优化器。在训练循环中,我们对每个 mini-batch 执行前向传播、损失计算、反向传播和优化。在预测测试集时,我们使用训练好的模型进行前向传播,并将预测结果反归一化。最后,我们计算模型在测试集上的 R2 得分。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋雨行舟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值