记一次CentOS7下python2爬取图片和岗位信息的过程

自从得知了centos里自带python,脑子里整天飞扑棱蛾子,我能用python干点啥

突然想到最近身边的小伙伴们,都在追逐于各色美女

我翻了翻我的电脑,找到了它

一个尘封已久的python程序

我默默的打出了   python --version

啊,久违的python2,真好


上面在扯皮,我们开始,为了能体现操作过程,我在未安装任何python库的电脑上开始

导入这个文件,直接运行,看报错

No module named requests  没有requests模块

这说明啥,说明- -就是没有呗,那咱就安装一个

我默默的输入了  pip install requests


安装pip

先安装扩展源EPEL

yum install epel-release

再安装pip

yum install python-pip

看一下成功了没   pip --version

我骄傲的 再次 执行  pip install requests

我们来运行一下  python myimage.py

- -

成功了= =可是为什么。。。按道理。。还有很多库没导入啊。。为什么没提示我安装,我另一台机子就必须要安装了好多三方库啊,为什么= =算了。。不管了,舔屏重要

缩略图要足够小,才能让你们不流口水


好了好了,代码会给你们的

import requests
import re
import os
url = 'http://pic.netbian.com/4kmeinv/'
r = requests.get(url)
html = r.text
reg = re.compile('<li>.*?<img src="(.*?)".*?</li>')
srcFront = 'http://pic.netbian.com'
srclist = re.findall(reg,html)
path = './4kmeinv/'
if not os.path.exists(path) :
	os.makedirs(path)
for i,v in enumerate(srclist):
	picurl = srcFront+v
	res = requests.get(picurl)
	with open(path+str(i+1)+'.jpg',"wb") as f :
		f.write(res.content)
		f.close

 


爬豆瓣电影明星图片

需要安装bs4

pip install beautifulsoup4

# -*- encoding:utf-8 -*-
# 方法一,使用urllib.urlretrieve() 方法直接将远程数据下载到本地
import requests
from bs4 import BeautifulSoup
import urllib
import os

#把豆瓣搜索,明星在地址栏,对应的那个数字,填入下面str()的括号内
address = str(1050059)

# 设置获取网页内容的函数
def getHtml(index,number):
    # url = "https://movie.douban.com/celebrity/1004572/photos/?type=C&start="+str(index)
    url = "https://movie.douban.com/celebrity/"+number+"/photos/?type=C&start=" + str(index)
    r = requests.get(url,{"User-Agent":"Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11"})
    soup = BeautifulSoup(r.text,"html.parser")
    return soup

# 设置全局images变量
images = []
# 获取首页的图片数量
imgLen = len(getHtml(0,address).find('ul', attrs={'class': "poster-col3 clearfix"}).find_all('img'))
# 设置处理网页内容的函数
def getImages(pageNum,name,number):
    #创建文件夹
    if os.path.exists(name):
        os.rmdir("photos")
    else:
        os.mkdir(name)
    os.chdir(name)
    global address,images,imgLen
    for k in range(pageNum):
        # 1、存储soup对象
        eachsoup = getHtml(k*imgLen,number)
        # 2、获取图片列表父元素
        imageList = eachsoup.find('ul', attrs={'class': "poster-col3 clearfix"})
        # 3、获取所有image
        #     通过extend方法,还是一个list,如果用append会是多个list,下面的循环的就要额外处理了
        images.extend(imageList.find_all('img'))

    #3、用循环处理所有li内的具体内容
    for i in range(len(images)):
        try:
            #获取图片后缀名,防止真实网址图片为png,jpg,gif等格式
            suffix = images[i]['src'][-3:]
            image_name = str(i+1)+'.'+suffix
            urllib.urlretrieve(images[i]['src'],image_name)
        except Exception:
            print('存储有异常')
    return

#      爬几页 文件夹名
getImages(1,'bingbing',address)

爬取51job岗位信息

需要安装xlwt

pip install xlwt

# -*- encoding:utf-8 -*-
import urllib2
import re
import xlwt

#获取源码
def get_content(page,job_name):
    url = "http://search.51job.com/list/010000,000000,0000,00,9,99,"+job_name+",2,"+str(page)+".html?lang=c&stype=&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&providesalary=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare="
    response = urllib2.urlopen(url)
    html = response.read().decode('gbk').encode('utf-8')
    return html
# 获取满足正则表达式的爬取目标
def get(html):
    pattern = re.compile(r'class="t1 ">.*? <a target="_blank" title="(.*?)".*? <span class="t2"><a target="_blank" title="(.*?)".*?<span class="t3">(.*?)</span>.*?<span class="t4">(.*?)</span>.*? <span class="t5">(.*?)</span>',re.S)#匹配换行符
    result = re.findall(pattern,html)
    return result
#设置全局的datalist存储爬取的目标
datalist = []
#调用方法获取爬取内容存入datalist
def savaDataToDatalist(page_num,job_name):
    for page in range(1,page_num):
        html = get_content(page,job_name)
        for i in get(html):
            data = []
            for j in range(0,5):
                data.append(i[j])
            datalist.append(data)
    return
# 将数据保存到excel中
def saveDataToXLS(savepath):
    book = xlwt.Workbook(encoding='utf-8', style_compression=0)
    sheet = book.add_sheet('51job搜索的职位', cell_overwrite_ok=True)
    col = (u'职位', u'公司名称', u'公司地点',u'薪资',u'发布时间')
    for i in range(0, 5):
        sheet.write(0, i, col[i])  # 列名
    i=0

    for i in range(0,len(datalist)):
        data = datalist[i]
        for j in range(0,5):
            sheet.write(i+1,j, data[j])  # 数据
    book.save(savepath)  # 保存
    return


def savaAll(job_name,page_num,saved_file_name):
    savaDataToDatalist(page_num,job_name)
    if('xls' in saved_file_name):
        saveDataToXLS(unicode(saved_file_name,'utf8'))
    return

savaAll('大数据',3,'大数据职位信息.xls')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值