1067 Bash游戏 V2 【博弈】

题目链接51nod-1067

## **题目描述**: 有一堆石子共有N个。A B两个人轮流拿,A先拿。每次只能拿1,3,4颗,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N,问最后谁能赢得比赛。 例如N = 2。A只能拿1颗,所以B可以拿到最后1颗石子。

思路

神奇的博弈论;
这个题就不是裸了,我们需要打出sg表,找出规律之后才可以做;关于sg的打表,看下面两个博客就可以学会啦!but:发现大牛的小问题,就是

这个 j <= N 我觉得有问题, 他可能会把自己的sg加入到s序列 导致最后的sg表不正确;
【实例】取石子问题

有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?

SG[0]=0,f[]={1,3,4},

x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG1 = mex{ SG[0] }= mex{0} = 1;

x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG2 = mex{ SG1 }= mex{1} = 0;

x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG3 = mex{SG2,SG[0]} = mex{0,0} =1;

x=4 时,可以取走4- f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG3,SG1,SG[0]} = mex{1,1,0} = 2;

x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG2,SG1} =mex{2,0,1} = 3;
以下是自己的延伸:
x=6时,可以取走6 - f{1, 3, 4}个石子,剩余{5, 3, 2}个,所以SG[5] = mae{SG[5], SG3, SG2} = mex{3, 1, 0}
终点来了,就是当x=7时会出现问题
x=7时,按原大牛的写法可以取走 7 - f{1,3,4}, 但是当 i == 7时, 两个条件都满足,会把 SG[7]也加进去, 导致SG[7]得到的不是正确的结果!
关于博弈论的学习Blog:
1.博弈论及算法实现
2.SG函数和SG定理【详解】

过程

我们先用sg函数打一个0-100的表 看一下规律;

#include <bits/stdc++.h>
using namespace std;

#define N 3
#define MAX 1000

int f[N], sg[MAX], vis[MAX];

void init(int n)
{
    memset(sg, 0, sizeof(sg));
    for(int i = 1; i<=n; i++)
    {
        memset(vis, 0, sizeof(vis));
        for(int j = 0; f[j] <= i && j < N; j++)
        {
            vis[sg[i - f[j]]] = 1;
        }
        for(int j = 0; ; j++)
        {
            if(!vis[j])
            {
                sg[i] = j;
                break;
            }
        }
    }
}

int main()
{
    f[0] = 1, f[1] = 3, f[2] = 4;
    init(100);
    for(int i = 0; i<100; i++)
    {
        cout << "i = " << i << "    sg[i] = " << sg[i] << endl;
    }
    return 0;
}

结果是这样:
在这里插入图片描述
可以看出 当 n % 7 == 0 || (n - 2) % 7 == 0 是 先手必败 否则先手必胜;

AC代码

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int t;
    cin >> t;
    while(t--)
    {
        int n;
        cin >> n;
        if(n % 7 == 0 || (n - 2) % 7 == 0)
            cout << "B" << endl;
        else
        cout << "A" << endl;
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值