
小样本学习
文章平均质量分 90
XL_Dylan
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[小样本分割]Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?
没有元学习的Few-Shot分割:一个好的转导推理是你所需要的吗? (CVPR2021)本文的从构建推理过程入手,而非对网络结构进行设计,巧妙利用了转导推理实现了超高的性能!文章的方法部分全是数学推导,比较晦涩论文地址开源代码摘要我们表明,在Few-Shot分割任务中执行推理的方式对性能有实质性的影响——这是一个在元学习范式的文献中经常被忽视的方面。我们通过优化三个互补的新损失,利用其未标记像素的统计信息,为给定的查询图像引入一种转换推理:i)标记的支持像素的交叉熵;ii)未标记查询图像像素的后原创 2021-04-13 15:32:45 · 1773 阅读 · 0 评论 -
小样本语义分割论文及开源代码集合
主要是自然图像上的小样本分割,医学图像上的将另开一帖。本文持续更新中!One-Shot Learning for Semantic Segmentation(BMVC2017)开源代码CANet: Class-agnostic segmentation networks with iterative refinement and attentive few-shot learning(CVPR2019)开源代码Pyramid Graph Networks with Connection Atte原创 2021-04-10 11:01:06 · 2980 阅读 · 0 评论 -
小样本学习综述Generalizing from a Few Examples-A Survey on Few-Shot
[摘要]:机器学习在数据密集型应用中非常成功,但当数据集很小时,它常常受到阻碍。为了解决这一问题,近年来提出了小样本学习(FSL)。利用先验知识,FSL可以快速地泛化到只包含少量有监督信息的样本的新任务中。在这篇论文中,我们进行了一个彻底的调研,以充分了解FSL。从FSL的正式定义出发,我们将FSL与几个相关的机器学习问题区分开来。然后指出了FSL的核心问题是经验风险最小化是不可靠的。基于先验知识如何处理这一核心问题,我们从三个角度对FSL方法进行了分类:(i)数据,它使用先验知识来增加监督经验(ii原创 2021-03-13 15:22:39 · 1883 阅读 · 0 评论