https://www.luogu.com.cn/problem/CF526F
对于一个坐标
(
x
,
y
)
(x,y)
(x,y)令
a
[
x
]
=
y
a[x]=y
a[x]=y于是问题就变成了
经典的连续段计数问题
没有重复的元素
所以对于一个区间如果满足
m
a
x
−
m
i
n
+
1
=
l
e
n
max-min+1=len
max−min+1=len
那就是成立的(充要条件)
变一下式子
m
a
x
−
m
i
n
−
l
e
n
=
−
1
max-min-len=-1
max−min−len=−1
可以用那线段树+单调队列维护对于以当前点为右端点的所有区间的最大值-最小值-长度(即上面那条式子)的最小值和最小值个数
把每次算出来的个数加起来就是答案
code:
#include<bits/stdc++.h>
#define N 1000005
using namespace std;
struct T {
int tg, x, gs;
} t[N << 2];
void build(int rt, int l, int r) {
t[rt].gs = r - l + 1;
if(l == r) return;
int mid = (l + r) >> 1;
build(rt << 1, l, mid), build(rt << 1 | 1, mid + 1, r);
}
void add(int rt, int x) {
t[rt].tg += x, t[rt].x += x;
}
void pushdown(int rt) {
add(rt << 1, t[rt].tg);
add(rt << 1 | 1, t[rt].tg);
t[rt].tg = 0;
}
void update(int rt, int l, int r, int L, int R, int o) {
if(L <= l && r <= R) {add(rt, o); return;}
pushdown(rt);
int mid = (l + r) >> 1;
if(L <= mid) update(rt << 1, l, mid, L, R, o);
if(R > mid) update(rt << 1 | 1, mid + 1, r, L, R, o);
t[rt].x = min(t[rt << 1].x, t[rt << 1 | 1].x);
t[rt].gs = (t[rt << 1].x == t[rt].x? t[rt << 1].gs : 0) + (t[rt << 1 | 1].x == t[rt].x? t[rt << 1 | 1].gs : 0);
}
int n, sta1[N], sta2[N], top1, top2, a[N];
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; i ++) {
int x, y;
scanf("%d%d", &x, &y);
a[x] = y;//转换为序列问题
}
build(1, 1, n);
long long ans = 0;
for(int i = 1; i <= n; i ++) {
while(top1 && a[sta1[top1]] < a[i]) update(1, 1, n, sta1[top1 - 1] + 1, sta1[top1], - a[sta1[top1]]), top1 --;//维护最大值
while(top2 && a[sta2[top2]] > a[i]) update(1, 1, n, sta2[top2 - 1] + 1, sta2[top2], a[sta2[top2]]), top2 --;//维护最小值
update(1, 1, n, 1, i, -1);//len+1了,所以全部都要-1
sta1[++ top1] = sta2[++ top2] = i;
update(1, 1, n, sta1[top1 - 1] + 1, i, a[i]), update(1, 1, n, sta2[top2 - 1] + 1, i, - a[i]);//加上右端点这个数
ans += t[1].gs; //计算以又端点为结尾的答案
}
printf("%lld", ans);
return 0;
}