CF526F Pudding Monsters

https://www.luogu.com.cn/problem/CF526F

对于一个坐标 ( x , y ) (x,y) (x,y) a [ x ] = y a[x]=y a[x]=y于是问题就变成了
经典的连续段计数问题
没有重复的元素
所以对于一个区间如果满足 m a x − m i n + 1 = l e n max-min+1=len maxmin+1=len
那就是成立的(充要条件)
变一下式子
m a x − m i n − l e n = − 1 max-min-len=-1 maxminlen=1
可以用那线段树+单调队列维护对于以当前点为右端点的所有区间的最大值-最小值-长度(即上面那条式子)的最小值和最小值个数
把每次算出来的个数加起来就是答案
code:

#include<bits/stdc++.h>
#define N 1000005
using namespace std;
struct T {
	int tg, x, gs;
} t[N << 2];
void build(int rt, int l, int r) {
	t[rt].gs = r - l + 1;
	if(l == r) return;
	int mid = (l + r) >> 1;
	build(rt << 1, l, mid), build(rt << 1 | 1, mid + 1, r);
}
void add(int rt, int x) {
	t[rt].tg += x, t[rt].x += x;
}
void pushdown(int rt) {
	add(rt << 1, t[rt].tg);
	add(rt << 1 | 1, t[rt].tg);
	t[rt].tg = 0;
}
void update(int rt, int l, int r, int L, int R, int o) {
	if(L <= l && r <= R) {add(rt, o); return;}
	pushdown(rt);
	int mid = (l + r) >> 1;
	if(L <= mid) update(rt << 1, l, mid, L, R, o);
	if(R > mid) update(rt << 1 | 1, mid + 1, r, L, R, o);
	t[rt].x = min(t[rt << 1].x, t[rt << 1 | 1].x);
	t[rt].gs = (t[rt << 1].x == t[rt].x? t[rt << 1].gs : 0) + (t[rt << 1 | 1].x == t[rt].x? t[rt << 1 | 1].gs : 0);
}
int n, sta1[N], sta2[N], top1, top2, a[N];
int main() {
	scanf("%d", &n);
	for(int i = 1; i <= n; i ++) {
		int x, y;
		scanf("%d%d", &x, &y);
		a[x] = y;//转换为序列问题 
	}
	build(1, 1, n);
	long long ans = 0;
	for(int i = 1; i <= n; i ++) {
		while(top1 && a[sta1[top1]] < a[i]) update(1, 1, n, sta1[top1 - 1] + 1, sta1[top1], - a[sta1[top1]]), top1 --;//维护最大值 
		while(top2 && a[sta2[top2]] > a[i]) update(1, 1, n, sta2[top2 - 1] + 1, sta2[top2], a[sta2[top2]]), top2 --;//维护最小值 
		update(1, 1, n, 1, i, -1);//len+1了,所以全部都要-1 
		sta1[++ top1] = sta2[++ top2] = i;
		update(1, 1, n, sta1[top1 - 1] + 1, i, a[i]), update(1, 1, n, sta2[top2 - 1] + 1, i, - a[i]);//加上右端点这个数 
		ans += t[1].gs; //计算以又端点为结尾的答案 
	}
	printf("%lld", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值