Python学习总结(11)之 列表生成式、生成器、迭代器

在这里插入图片描述
先学习2个单词:Iterable:可迭代的 Iterator:迭代器

1、列表生成式

  • 列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
    可以用来生成一系列的数据。
    举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):

      >>> list(range(1, 11))
      [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    
  • 但如果要生成[1x1, 2x2, 3x3, …, 10x10]怎么做?方法一是循环:
    方法1:

      >>> L = []
      >>> for x in range(1, 11):
      ...    L.append(x * x)
      ...
      >>> L
      [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
    

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
方法2:

	>>> [x * x for x in range(1, 11)]
	[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

注意:写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用。

  • 带有if判断语句的列表生成式
    for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

      >>> [x * x for x in range(1, 11) if x % 2 == 0]
      [4, 16, 36, 64, 100]
    

    还可以使用两层循环,可以生成全排列:

      >>> [m + n for m in 'ABC' for n in 'XYZ']  #注意此时m+n中 ,+ 是一个连接符
      ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
    

    三层和三层以上的循环就很少用到了。

  • 举例:运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

      >>> import os # 导入os模块,模块的概念后面讲到
      >>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
      
      ['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications',   'Documents', 'Downloads']
    
  • for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:

      >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }  #字典中的items对象
      >>> for k, v in d.items():
      ...     print(k, '=', v)
      ...
      y = B
      x = A
      z = C
    
  • 因此,列表生成式也可以使用两个变量来生成list:

      >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
      >>> [k + '=' + v for k, v in d.items()] #注意加号 +为连接符
      ['y=B', 'x=A', 'z=C']
    
  • 最后把一个list中所有的字符串变成小写:

      >>> L = ['Hello', 'World', 'IBM', 'Apple']
      >>> [s.lower() for s in L]
      ['hello', 'world', 'ibm', 'apple']
    

2、生成器 generator 符号() yield

与列表生成式的差别:可以动态的扩展长度,不受内存的限制
通过列表生成式,我们可以直接创建一个列表。但是,**受到内存限制,列表容量肯定是有限的。**而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

如果列表元素可以按照某种算法推算出来,那我们就可以在循环的过程中不断推算出后续的元素。
这样就不必创建完整的list,从而节省大量的空间。

在Python中,这种一边循环一边计算的机制,称为生成器:generator。

  • 生成器generator创建方法一:
    方法1: 把一个列表生成式的[]改成(),就创建了一个generator:

      >>> L = [x * x for x in range(10)] # 注意,此时是[ ]
      >>> L
      
      [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
      
      >>> g = (x * x for x in range(10))# 注意,此时是()
      >>> g
      
      <generator object <genexpr> at 0x1022ef630>
    

创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。

  • 生成器generator的元素输出方法
  1. 我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
    如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:
    如:

     >>> next(g)
     0
     >>> next(g)
     1
     >>> next(g)
     4
     ...
     >>> next(g)
     81
     >>> next(g)
     Traceback (most recent call last):
       File "<stdin>", line 1, in <module>
     StopIteration
    

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

  1. 当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

     >>> g = (x * x for x in range(10))
     >>> for n in g:
     ...     print(n)
     ... 
     0
     1
     4
     9
     16
     25
     36
     49
     64
     81
    

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, …

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return 'done'

注意,赋值语句:

a, b = b, a + b

相当于:

t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]

但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

	>>> fib(6)
	1
	1
	2
	3
	5
	8
	'done'

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b  #注意此处,生成器函数yield
        a, b = b, a + b
        n = n + 1
    return 'done'
  • 生成器generator创建方法二:
    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator

    >>> f = fib(6)
    >>> f
    <generator object fib at 0x104feaaa0>
    
  • 生成器和函数的执行流程的差别 yield可以理解每次都从断点处开始执行

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,3,5:

def odd():
    print('step 1')
    yield 1   #注意此处
    print('step 2')
    yield(3)#注意此处
    print('step 3')
    yield(5)#注意此处

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

	>>> o = odd()
	>>> next(o)
	step 1
	1
	>>> next(o)
	step 2
	3
	>>> next(o)
	step 3
	5
	>>> next(o)
	Traceback (most recent call last):
	  File "<stdin>", line 1, in <module>
	StopIteration

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

	>>> for n in fib(6):
	...     print(n)
	...
	1
	1
	2
	3
	5
	8

注意: 用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

	>>> g = fib(6)
	>>> while True:
	...     try:
	...         x = next(g)
	...         print('g:', x)
	...     except StopIteration as e:
	...         print('Generator return value:', e.value)
	...         break
	...
	g: 1
	g: 1
	g: 2
	g: 3
	g: 5
	g: 8
	Generator return value: done

3、迭代器

  1. 我们已经知道,可以直接作用于for循环的数据类型有以下几种:

    一类是集合数据类型,如list、tuple、dict、set、str等;

    一类是generator,包括生成器和带yield的generator function。

    这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。

可以使用isinstance()判断一个对象是否是Iterable对象:

	>>> from collections import Iterable  #注意,此处导入的为 Iterable
	>>> isinstance([], Iterable)
	True
	
	>>> isinstance({}, Iterable)
	True
	
	>>> isinstance('abc', Iterable)
	True
	
	>>> isinstance((x for x in range(10)), Iterable)
	True
	
	>>> isinstance(100, Iterable)
	False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

  1. 可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。

可以使用isinstance()判断一个对象是否是Iterator对象:

	>>> from collections import Iterator #注意,此处导入的为 Iterator
	>>> isinstance((x for x in range(10)), Iterator)
	True
	
	>>> isinstance([], Iterator)
	False
	
	>>> isinstance({}, Iterator)
	False
	
	>>> isinstance('abc', Iterator)
	False

生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。

  1. 把list、dict、str等Iterable变成Iterator可以使用iter()函数:

     >>> isinstance(iter([]), Iterator)
     True
     >>> isinstance(iter('abc'), Iterator)
     True
    
  2. 释惑:为什么list、dict、str等数据类型不是Iterator?

    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

  3. 总结

  • 凡是可作用于for循环的对象都是Iterable类型;

  • 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

  • 集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

  • Python的for循环本质上就是通过不断调用next()函数实现的,例如:

      for x in [1, 2, 3, 4, 5]:
          pass
    

    实际上完全等价于:

      it = iter([1, 2, 3, 4, 5])  # 首先获得Iterator对象:
    
      while True:	 # 循环:
          try:
              x = next(it)  # 获得下一个值:
          except StopIteration: # 遇到StopIteration就退出循环
              break
    

参考网址:https://www.liaoxuefeng.com/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值