深度学习核心的是GPU(深度学习加速)
反过来说:GPU的选择将从根本上决定你的深度学习体验
电脑配置
- 可以进行深度学习的显卡(有些显卡不能进行深度学习)【独立显卡】
- 显存的大小不能低于4G
- 内存的大小不能低于8G
- CPU不能低于四核八线程
GPU选择建议
- 使用GTX 1070或更好的GPU
- 购买带有张量核心的RTX GPU
- 在GPU上进行原型设计,然后在TPU或云GPU上训练模型
显卡型号
显卡型号 | 描述 |
---|---|
RTX 2080 Ti | 性能最好的GPU |
RTX 2080,GTX 1080(高端),RTX 2060或GTX 1060 (6GB)(中低端) | 高性价比 |
GTX 1070, GTX 1070 Ti, GTX 1060 | 性价比高,便宜 |
RTX 2080 Ti, RTX 2080 | 使用的数据集>250GB |
GTX 1060 (6GB) | 预算很少、穷人之选 |
GTX 1050 Ti (4GB)/CPU(建模)+ AWS/TPU(训练) | 几乎没预算 |
GTX 1060 (6GB)(建模)+ AWS(最终训练)+ fast ai库、RTX 2070 | Kaggle竞赛 |
RTX 2080 Ti | NLP研究人员 |
采用鼓风设计的GTX 2080 Ti,如果训练非常大的网络,请选择RTX Titans | 计算机视觉或机器翻译研究人员 |
RTX 2070起步,以后按需添置更多RTX 2070 | 已经开始研究深度学习 |
GTX 1050 Ti(2GB或4GB显存) | 尝试入门深度学习 |
显卡选择参考网址:
- https://timdettmers.com/2019/04/03/which-gpu-for-deep-learning/
- https://www.sohu.com/a/305898939_610300