数据结构:笔记:排序-拓扑排序

拓扑排序

的实现步骤
在有向图中选一个没有前驱的顶点并且输出
从图中删除该顶点和所有以它为尾的弧(白话就是:删除所有和它有关的边)
重复上述两步,直至所有顶点输出,或者当前图中不存在无前驱的顶点为止,后者代表我们的有向图是有环的,因此,也可以通过拓扑排序来判断一个图是否有环。

拓扑排序示例手动实现

如果我们有如下的一个有向无环图,我们需要对这个图的顶点进行拓扑排序,过程如下:
在这里插入图片描述
首先,我们发现V6和v1是没有前驱的,所以我们就随机选去一个输出,我们先输出V6,删除和V6有关的边,得到如下图结果:
在这里插入图片描述
然后,我们继续寻找没有前驱的顶点,发现V1没有前驱,所以输出V1,删除和V1有关的边,得到下图的结果:
在这里插入图片描述
然后,我们又发现V4和V3都是没有前驱的,那么我们就随机选取一个顶点输出(具体看你实现的算法和图存储结构),我们输出V4,得到如下图结果:
在这里插入图片描述
然后,我们输出没有前驱的顶点V3,得到如下结果:
在这里插入图片描述
然后,我们分别输出V5和V2,最后全部顶点输出完成,该图的一个拓扑序列为:

v6–>v1—->v4—>v3—>v5—>v2

拓扑排序的代码实现

下面,我们将用两种方法来实现我么的拓扑排序:

Kahn算法

基于DFS的拓扑排序算法
首先我们先介绍第一个算法的思路:
Kahn的算法的思路其实就是我们之前那个手动展示的拓扑排序的实现,我们先使用一个栈保存入度为0 的顶点,然后输出栈顶元素并且将和栈顶元素有关的边删除,减少和栈顶元素有关的顶点的入度数量并且把入度减少到0的顶点也入栈。具体的代码如下:

bool Graph_DG::topological_sort() {
    cout << "图的拓扑序列为:" << endl;
    //栈s用于保存栈为空的顶点下标
    stack<int> s;
    int i;
    ArcNode * temp;
    //计算每个顶点的入度,保存在indgree数组中
    for (i = 0; i != this->vexnum; i++) {
        temp = this->arc[i].firstarc;
        while (temp) {
            ++this->indegree[temp->adjvex];
            temp = temp->next;
        }

    }

    //把入度为0的顶点入栈
    for (i = 0; i != this->vexnum; i++) {
        if (!indegree[i]) {
            s.push(i); 
        }
    }
    //count用于计算输出的顶点个数
    int count=0;
    while (!s.empty()) {//如果栈为空,则结束循环
        i = s.top();
        s.pop();//保存栈顶元素,并且栈顶元素出栈
        cout << this->arc[i].data<<" ";//输出拓扑序列
        temp = this->arc[i].firstarc;
        while (temp) {
            if (!(--this->indegree[temp->adjvex])) {//如果入度减少到为0,则入栈
                s.push(temp->adjvex);
            }
            temp = temp->next;
        }
        ++count;
    }
    if (count == this->vexnum) {
        cout << endl;
        return true;
    } 
    cout << "此图有环,无拓扑序列" << endl;
    return false;//说明这个图有环
}

现在,我们来介绍第二个算法的思路:

DFS

其实DFS就是深度优先搜索,它每次都沿着一条路径一直往下搜索,知道某个顶点没有了出度时,就停止递归,往回走,所以我们就用DFS的这个思路,我们可以得到一个有向无环图的拓扑序列,其实DFS很像Kahn算法的逆过程。具体的代码实现如下:

bool Graph_DG::topological_sort_by_dfs() {
    stack<string> result;
    int i;
    bool * visit = new bool[this->vexnum];
    //初始化我们的visit数组
    memset(visit, 0, this->vexnum);
    cout << "基于DFS的拓扑排序为:" << endl;
    //开始执行DFS算法
    for (i = 0; i < this->vexnum; i++) {
        if (!visit[i]) {
            dfs(i, visit, result);
        }
    }
    //输出拓扑序列,因为我们每次都是找到了出度为0的顶点加入栈中,
    //所以输出时其实就要逆序输出,这样就是每次都是输出入度为0的顶点
    for (i = 0; i < this->vexnum; i++) {
        cout << result.top() << " ";
        result.pop();
    }
    cout << endl;
    return true;
}
void Graph_DG::dfs(int n, bool * & visit, stack<string> & result) {

        visit[n] = true;
        ArcNode * temp = this->arc[n].firstarc;
        while (temp) {
            if (!visit[temp->adjvex]) {
                dfs(temp->adjvex, visit,result);
            }
            temp = temp->next;
        }
        //由于加入顶点到集合中的时机是在dfs方法即将退出之时,
        //而dfs方法本身是个递归方法,
        //仅仅要当前顶点还存在边指向其他不论什么顶点,
        //它就会递归调用dfs方法,而不会退出。
        //因此,退出dfs方法,意味着当前顶点没有指向其他顶点的边了
        //,即当前顶点是一条路径上的最后一个顶点。
        //换句话说其实就是此时该顶点出度为0了
        result.push(this->arc[n].data);

}

两种算法总结


对于基于DFS的算法,增加结果集的条件是:顶点的出度为0。这个条件和Kahn算法中入度为0的顶点集合似乎有着异曲同工之妙,Kahn算法不须要检测图是否为DAG,假设图为DAG,那么在入度为0的栈为空之后,图中还存在没有被移除的边,这就说明了图中存在环路。而基于DFS的算法须要首先确定图为DAG,当然也可以做出适当调整,让环路的检测測和拓扑排序同一时候进行,毕竟环路检測也可以在DFS的基础上进行。
二者的复杂度均为O(V+E)。

完整的代码可见:

https://blog.csdn.net/qq_35644234/article/details/60578189

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椒椒。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值