MATLAB控制系统仿真5.2:MATLAB_SIMULINK在时域分析中的应用

本文详细介绍了MATLAB/SIMULINK在自动控制领域的应用,涉及单位阶跃响应、脉冲响应、零输入响应和任意输入响应的计算,以及如何通过SIMULINK进行系统仿真。通过实例展示,探讨了系统参数如固有频率、阻尼比和增益对时域响应性能的影响,并提供了改善系统响应的策略,如输出微分反馈和比例微分控制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该系列博客主要讲述 M A T L A B {\rm MATLAB} MATLAB软件在自动控制方面的应用,参考书籍:《 M A T L A B / S I M U L I N K {\rm MATLAB/SIMULINK} MATLAB/SIMULINK与控制系统仿真》。



2.MATLAB/SIMULINK在时域分析中的应用
2.1 时域分析中MATLAB函数的应用
  1. 单位阶跃响应函数 s t e p ( ) {\rm step()} step()

    # step()函数作用:
    # step()绘制出由向量num和den表示的连续系统的阶跃响应在指定时间内的波形图;
    
    # step()函数语法格式:
    # 语法格式1:
    y=step(num,den,t)
    
    # 参数说明:
    num:系统分子多项式系数向量;
    den:系统分母多项式系数向量;
    t:仿真时间向量;
    
    # 语法格式2:
    [y,x,t]=step(num,den)
    
    # 参数说明:
    num:系统分子多项式系数向量;
    den:系统分母多项式系数向量;
    t:时间向量,由系统模型特性自动生成;
    x:状态变量,返回空矩阵;
    
    # 语法格式3:
    [y,x,t]=step(A,B,C,D,iu)
    
    # 参数说明:
    A,B,C,D:系统的状态空间描述矩阵;
    iu:用来指明输入变量的序号;
    x:系统返回的状态轨迹;
    
  2. 单位脉冲响应函数 i m p u l s e ( ) {\rm impulse()} impulse()

    # impulse()函数作用:
    # impulse()函数绘出由向量num和den表示的连续系统在指定时间内的脉冲响应时域波形图;
    
    # impulse()函数语法格式:
    y=impulse(num,den,t)
    [y,x,t]=impulse(num,den)
    impulse(num,den),impulse(num,den,t)
    [y,x,t]=impulse(A,B,C,D,iu,t)
    impulse(A,B,C,D,iu),impulse(A,B,C,D,iu,t)
    
  3. 零输入响应函数 i n i t i a l ( ) {\rm initial()} initial()

    # initial()函数作用:
    # initial()函数求取连续系统零输入响应;
    # 当不带输出变量引用函数,initial()函数在当前窗口绘制系统零输入响应曲线;
    # 当带有输出变量引用函数,可得系统零输入响应的输出数据,不直接绘制曲线;
    
    # impulse()函数语法格式:
    intial(sys,x0),initial(sys,x0,t)
    [Y,T,X]=initial(sys,x0),[Y,T,X]=initial(sys,x0,t)
    
    # 参数说明:
    sys:线性时不变系统模型;
    x0:初始状态;
    t:指定的响应时间;
    Y:响应的输出;
    T:仿真的时间;
    X:系统的状态变量;
    
  4. 任意输入响应函数 l s i m ( ) {\rm lsim()} lsim()

    # lsim()函数作用:
    # lsim()函数用于求取任意输入响应。
    # 当不带输出变量引用函数,lsim()函数在当前窗口绘制系统任意输入响应曲线;
    # 当带有输出变量引用函数,可得系统任意输入响应的输出数据,不直接绘制曲线;
    
    # lsim()函数语法格式:
    lsim(sys1,u,t),lsim(sys2,u,t,x0)
    [Y,T,X]=lsim(sys1,u,t),[Y,T,X]=lsim(sys2,u,t,x0)
    
    # 参数说明:
    u:输入信号;
    x0:初始条件;
    t:等间隔时间向量;
    sys1:tf()或zpk()模型;
    sys2:ss()模型;
    Y:响应的输出;
    T:仿真的时间;
    X:系统的状态变量;
    
2.2 时域响应实战
2.2.1 实例1

实验要求:已知系统的闭环传递函数为: G ( s ) = 1 s 2 + 0.4 s + 1 G(s)=\displaystyle\frac{1}{s^2+0.4s+1} G(s)=s2+0.4s+11,求单位阶跃和单位斜坡响应曲线。

解:

% 实例Chapter5.2 2.2.1
clc;clear;

num=[1];den=[1,0.4,1];  % 传递函数分子分母多项式系数向量
t=[0:0.1:10];           % 响应时间
u=t;                    % 单位斜坡输入
y=step(num,den,t);      % 单位阶跃响应
yl=lsim(num,den,u,t);   % 单位斜坡响应

plot(t,y,'b-',t,yl,'r:')    % 绘制响应曲线
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);
grid

xlabel('时间/s');ylabel('c(t)');
title('单位阶跃和单位斜坡响应曲线');
legend('单位阶跃响应曲线','单位斜坡响应曲线');

5_2_2_1

2.2.2 实例2

实验要求:已知单位负反馈系统,开环传递函数为: G ( s ) = s + 2 s 2 + 10 s + 1 G(s)=\displaystyle\frac{s+2}{s^2+10s+1} G(s)=s2+10s+1s+2,系统输入信号如下图所示的三角波,求系统输出响应,将输入输出信号对比显示。

5

解:

% 实例Chapter5.2 2.2.2
clc;clear;

numg=[1,2];deng=[1,10,1];          % 开环传递函数
[num,den]=cloop(numg,deng,-1);     % 单位负反馈闭环传递函数

% 三角波信号产生
v1=[0:0.1:1];
v2=[0.9:-0.1:-1];
v3=[-0.9:0.1:0];
u=[v1,v2,v3];

t=[0:0.1:4];                        % 仿真时间
[y,x]=lsim(num,den,u,t);            % 三角波的响应

plot(t,y,'b-',t,u,'r:');            % 绘制响应曲线
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);

xlabel('时间/s');ylabel('c(t)');
title('三角波输入和响应曲线');
legend('响应曲线','三角波信号');

5_2_2_2

2.2.3 实例3

已知单位负反馈系统,其开环传递函数为: G ( s ) = s + 2 s 2 + 10 s + 1 G(s)=\displaystyle\frac{s+2}{s^2+10s+1} G(s)=s2+10s+1s+2,系统输入信号如下图所示的锯齿波,用 S I M U L I N K {\rm SIMULINK} SIMULINK求系统输出响应,将输入输出信号作对比显示。

6

解:

# SIMULINK模型建立:
# 所需模块库:
# 锯齿波信号:Sources模块库下的Signal Generator模块;
# 传递函数模块:Continuous模块库下的Transfer Fcn模块;
# 示波器模块:Sinks模块库下的Scope模块;
# 相加器模块:Math Operations模块库下的Add模块;
# 向量串接函数:Math Operations模块库下的Vector Concatenate模块;

# 锯齿波信号模块参数设置:
# "Wave form":"sawtooth"(锯齿波);
# "Amplitude":1;
# "Frequency":1/4;
# "Units":"Hertz";

S I M U L I N K {\rm SIMULINK} SIMULINK模型】

7

S I M U L I N K {\rm SIMULINK} SIMULINK结果】

8

2.2.4 实例4

实验要求:已知单位负反馈系统,其开环传递函数为 G 1 ( s ) G_1(s) G1(s) G 2 ( s ) G_2(s) G2(s)的串联,其中: G 1 ( s ) = s + 5 ( s + 1 ) ( s + 3 ) G_1(s)=\displaystyle\frac{s+5}{(s+1)(s+3)} G1(s)=(s+1)(s+3)s+5 G 2 ( s ) = s 2 + 1 s 2 + 4 s + 4 G_2(s)=\displaystyle\frac{s^2+1}{s^2+4s+4} G2(s)=s2+4s+4s2+1,系统输入信号为: r ( t ) = sin ⁡ ( t ) r(t)=\sin(t) r(t)=sin(t),用 S I M U L I N K {\rm SIMULINK} SIMULINK求取系统输出响应,将输入和输出信号对比显示。

解:

# SIMULINK模型建立:
# 所需模块库:
# 正弦波信号:Sources模块库下的Sin Wave模块;
# 传递函数模块:Continuous模块库下的Transfer Fcn模块;
# 传递函数模块:Continuous模块库下的Zero-Pole模块;
# 示波器模块:Sinks模块库下的Scope模块;
# 相加器模块:Math Operations模块库下的Add模块;
# 向量串接函数:Math Operations模块库下的Vector Concatenate模块;

S I M U L I N K {\rm SIMULINK} SIMULINK模型】

9

S I M U L I N K {\rm SIMULINK} SIMULINK结果】

10

2.3 时域响应性能指标
# 编程法求解性能指标
# [y,t]=step(G)返回响应值y和相应的时间t,通过计算,可得时域性能指标;

# 1.峰值时间
[Y,k]=max(y)		# 求出y的峰值和响应的时间
timetopeak=t(k)		# 获得峰值时间

# 2.超调量
C=dcgain(G)			# 求解系统的终值
[Y,k]=max(y)		# 求解y的峰值及响应的时间
percentovershoot=100*(Y-C)/C	# 计算超调量

# 3.上升时间
C=dcgain(G)			# 求解系统的终值
n=1;
while y(n)<C		# 求解输出第一次到达终值时的时间
	n=n+1;
end
risetime=t(n)

# 输出无超调系统响应,上升时间定义:输出从稳态值的10%上升到90%所需时间;
C=dcgain(G)			# 求解系统的终值
n=1;
while y(n)<0.1*C	# 输出第一次到达终值的10%的时间
	n=n+1;
end

m=1;
while y(m)<0.9*C	# 输出第一次到达终值的90%的时间
	m=m+1;
end
risetime=t(m)-t(n);

# 4.调节时间
C=dcgain(G);
i=length(t);

while (y(i)>0.98*C)&&(y(i)<1.02*C)
	i=i-1;
end
settlingtime=t(i)

实例:已知二阶系统传递函数为: G ( s ) = 3 ( s + 1 − 3 i ) ( s + 1 + 3 i ) G(s)=\displaystyle\frac{3}{(s+1-3{\rm i})(s+1+3{\rm i})} G(s)=(s+13i)(s+1+3i)3,分别用游动鼠标法和编程法求解系统的性能指标。

解:

【解法 1 1 1】:游动鼠标法。

% 实例Chapter5.2 2.3 example
clc;clear;

G=zpk([],[-1+3*i,-1-3*i],3);    % 控制系统模型
step(G);                        % 系统阶跃响应
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);

【用鼠标左键单击图中大概位置求解性能指标图】

5_2_3_01

M A T L A B {\rm MATLAB} MATLAB右键直接显示性能指标图】

5_2_3_02

【解法 2 2 2】:编程法。

% 实例Chapter5.2 2.3 example
clc;clear;

G=zpk([],[-1+3*i,-1-3*i],3);    % 控制系统模型
C=dcgain(G);                    % 求取峰值
[y,t]=step(G);
% plot(t,y);
% grid;

[Y,k]=max(y);
timetopeak=t(k);                % 峰值时间
percentovershoot=100*(Y-C)/C;   % 超调量

% 上升时间
n=1;
while y(n)<C
    n=n+1;
end
risetime=t(n);

% 调节时间
i=length(t);
while ((y(i)>0.98*C)&&(y(i)<1.02*C))
    i=i-1;
end
settlingtime=t(i);

% 显示各项指标
C,timetopeak,percentovershoot,risetime,settlingtime
% 结果显示:
C =
    0.3000

timetopeak =
    1.0592

percentovershoot =
   35.0670

risetime =
    0.6447
    
settlingtime =
    3.4999
2.4 二阶系统参数对时域响应性能的影响
2.4.1 闭环参数 ω n { \omega_n} ωn ζ {\rm \zeta} ζ的影响

实例:已知单位负反馈系统,其开环传递函数为: G ( s ) = ω n 2 s ( s + 2 ζ ω n ) G(s)=\displaystyle\frac{\omega_n^2}{s(s+2\zeta\omega_n)} G(s)=s(s+2ζωn)ωn2,其中: ω n = 1 , ζ \omega_n=1,\zeta ωn=1ζ为阻尼比,绘制 ζ \zeta ζ分别为 0 、 0.2 、 0.4 、 0.6 、 0.9 、 1.2 、 1.5 0、0.2、0.4、0.6、0.9、1.2、1.5 00.20.40.60.91.21.5时单位负反馈系统的单位阶跃响应曲线。

解:

% 实例Chapter5.2 2.4.1
clc;clear;

% 固有频率和阻尼比定义
wn=1;
zeta=[0,0.2,0.4,0.6,0.9,1.2,1.5];
num=wn*wn;

% 将t在0-20间均等划分成200份
t=linspace(0,20,200);

for j=1:7
    den=conv([1,0],[1,2*wn*zeta(j)]);  % 开环传递函数分母多项式
    G=tf(num,den);                      % 开环传递函数
    sys=feedback(G,1);                  % 闭环传递函数
    y(:,j)=step(sys,t);                 % 单位阶跃响应
end

plot(t,y(:,1:7));grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);

% 图形设置
title('典型二阶系统不同阻尼比单位阶跃响应');
legend('ζ=0','ζ=0.2','ζ=0.4','ζ=0.6','ζ=0.9','ζ=1.2','ζ=1.5');

【图形显示】

5_2_4_1

  • t r , t p , t s {t_r,t_p,t_s} tr,tp,ts均与 ω n \omega_n ωn成反比, ω n \omega_n ωn越大,响应越快;
  • ζ \zeta ζ是唯一决定超调量 σ % \sigma\% σ%的大小, ζ \zeta ζ是决定系统相对稳定性的唯一因素, ζ \zeta ζ越大, σ % \sigma\% σ%越小;
  • ζ \zeta ζ 0.4 ~ 0.9 0.4~0.9 0.40.9范围内,系统上升较快,超调量不太大;
  • ζ = 2 2 = 0.707 \zeta=\displaystyle\frac{\sqrt{2}}{2}=0.707 ζ=22 =0.707时,响应时间快,超调量为 4.3 % 4.3\% 4.3%,称此阻尼比为最佳阻尼,具有最佳阻尼的二阶系统称为二阶最佳系统;
2.4.2 开环参数 K K K T T T的影响
  • 二阶系统可表示为:
    G ( s ) = C ( s ) R ( s ) = K T s 2 + 1 T s + K T G(s)=\frac{C(s)}{R(s)}=\frac{\displaystyle\frac{K}{T}}{s^2+\displaystyle\frac{1}{T}s+\displaystyle\frac{K}{T}} G(s)=R(s)C(s)=s2+T1s+TKTK
    可得:
    K T = ω n 2 , 1 T = 2 ζ ω n ⇒ ω n = K T , ζ = 1 2 K T \frac{K}{T}=\omega_n^2,\frac{1}{T}=2\zeta\omega_n\Rightarrow\omega_n=\sqrt{\frac{K}{T}},\zeta=\frac{1}{2\sqrt{KT}} TK=ωn2,T1=2ζωnωn=TK ζ=2KT 1
    其中: T T T称为时间常数, K K K为回路增益;

  • T T T越小,则 ω n \omega_n ωn越大, ζ \zeta ζ越大,系统快速性和相对稳定性较好;

  • K K K越大,则 ω n \omega_n ωn越大, ζ \zeta ζ越小;

  • 二阶最佳系统应有: K = 1 2 T K=\displaystyle\frac{1}{2T} K=2T1,该关系为二阶最佳参数关系;

实例:已知单位负反馈二阶系统,开环传递函数: G ( s ) = K s ( T s + 1 ) G(s)=\displaystyle\frac{K}{s(Ts+1)} G(s)=s(Ts+1)K,其中: T = 1 T=1 T=1,绘制 K K K分别为: 0.1 、 0.2 、 0.5 、 0.8 、 1.0 、 2.4 0.1、0.2、0.5、0.8、1.0、2.4 0.10.20.50.81.02.4时,其单位负反馈系统的单位阶跃响应曲线。

解:

% 实例Chapter5.2 2.4.2
clc;clear;

% 参数定义
T=1;
K=[0.1,0.2,0.5,0.8,1.0,2.4];
t=linspace(0,20,200);

% 开环传递函数分子分母多项式
num=1;den=conv([1,0],[T,1]);

for j=1:6
    G=tf(num*K(j),den);     % 开环传递函数
    sys=feedback(G,1);      % 单位负反馈传递函数
    y(:,j)=step(sys,t);     % 单位阶跃响应
end

plot(t,y(:,1:6));grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);

% 图形设置
title('典型二阶系统不同开环增益单位阶跃响应');
legend('K=0.1','K=0.2','K=0.5','K=0.8','K=1.0','K=2.4');

5_2_4_2

2.4.3 闭环极点分布对时域响应的影响
  • 如果闭环极点位于虚轴上,则系统处于临界稳定状态;
  • 如果闭环极点是负实数极点,则系统阶跃响应是单调的, σ % = 0 \sigma\%=0 σ%=0
  • 如果闭环极点是负实部共轭复根极点,则系统阶跃响应是衰减振荡的;
  • 系统时域响应的快速性与闭环极点距虚轴的距离有关,距离越大,则 t s t_s ts越小;
  • 如果系统有多个闭环极点,则距虚轴越近的闭环极点所起的作用越大;如果一个闭环极点距虚轴的距离比另一个闭环极点距虚轴的距离大 5 5 5倍或 5 5 5倍以上,则距离远的闭环极点可忽略;
2.5 改善系统时域响应性能的措施
2.5.1 输出微分反馈

输出微分反馈系统结构图如下图所示:

11

原开环传递函数可写为:
K s ( T s + 1 ) = ω n 2 s ( s + 2 ζ ω n ) \frac{K}{s(Ts+1)}=\frac{\omega_n^2}{s(s+2\zeta\omega_n)} s(Ts+1)K=s(s+2ζωn)ωn2
其中: ω n \omega_n ωn ζ {\zeta} ζ τ = 0 \tau=0 τ=0时,原系统的固有频率和阻尼系数;

τ ≠ 0 \tau≠0 τ=0,可得:
G ( s ) = C ( s ) R ( s ) = ω n 2 s 2 + 2 ( ζ + 1 2 τ ω n ) s + ω n 2 G(s)=\frac{C(s)}{R(s)}=\frac{\omega_n^2}{s^2+2(\zeta+\displaystyle\frac{1}{2}\tau\omega_n)s+\omega_n^2} G(s)=R(s)C(s)=s2+2(ζ+21τωn)s+ωn2ωn2
加入微分反馈后,系统固有频率 ω n \omega_n ωn不变,阻尼比提高,有: ζ ′ = ζ + 1 2 τ ω n \zeta'=\zeta+\displaystyle\frac{1}{2}\tau\omega_n ζ=ζ+21τωn

实例:已知单位负反馈二阶系统,其中 T = 1 , K = 1 T=1,K=1 T=1K=1,绘制 τ \tau τ分别为 0 、 0.05 、 0.2 、 0.5 、 1.0 、 2.4 0、0.05、0.2、0.5、1.0、2.4 00.050.20.51.02.4时,单位负反馈系统的单位阶跃响应曲线。

解:

% 实例Chapter5.2 2.5.1
clc;clear;

% 参数定义
T=1;K=1;
tau=[0,0.05,0.2,0.5,1.0,2.4];
t=linspace(0,20,200);

% 传递函数建立部分
num=1;
for j=1:6
    den=conv([1,0],[T,1+tau(j)]);
    G=tf(num*K,den);                % 开环传递函数
    sys=feedback(G,1);              % 闭环传递函数
    y(:,j)=step(sys,t);
end

% 绘制单位阶跃响应曲线
plot(t,y(:,1:6));grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);

% 图形设置
title('典型二阶系统输出微分反馈的单位阶跃响应');
legend('τ=0','τ=0.05','τ=0.2','τ=0.5','τ=1.0','τ=2.4');

5_2_5_1

2.5.2 比例微分控制

比例微分控制的二阶系统结构图如下图所示:

12

闭环传递函数为:
G ( s ) = C ( s ) R ( s ) = ( 1 + τ s ) ω n 2 s 2 + 2 ( ζ + 1 2 τ ω n ) s + ω n 2 G(s)=\frac{C(s)}{R(s)}=\frac{(1+\tau{s})\omega_n^2}{s^2+2(\zeta+\displaystyle\frac{1}{2}\tau\omega_n)s+\omega_n^2} G(s)=R(s)C(s)=s2+2(ζ+21τωn)s+ωn2(1+τs)ωn2
比例微分控制可实现在不改变 ω n \omega_n ωn的条件下提高系统阻尼比 ζ ′ = ζ + 1 2 τ ω n \zeta'=\zeta+\displaystyle\frac{1}{2}\tau\omega_n ζ=ζ+21τωn,但比例微分在闭环传递函数中增加了一个零点 z = − 1 τ z=-\displaystyle\frac{1}{\tau} z=τ1,此零点的存在,将使系统的上升加快,但 σ % \sigma\% σ%也会增加,随 τ \tau τ的加大而加大;

实例 1 1 1:设系统闭环传递函数为: G ( s ) = 4 ( 1 + τ s ) s 2 + 2 s + 4 G(s)=\displaystyle\frac{4(1+\tau{s})}{s^2+2s+4} G(s)=s2+2s+44(1+τs),求 τ = 0 、 0.2 、 0.4 \tau=0、0.2、0.4 τ=00.20.4时,系统的单位阶跃响应。

解:

% 实例Chapter5.2 2.5.2.01
clc;clear;

tau=[0,0.2,0.4];
t=linspace(0,20,200);
num=4;den=[1,2,4];

% 传递函数建立
for j=1:3
    sys=tf(conv(num,[tau(j),1]),den);
    y(:,j)=step(sys,t);
end

% 绘制单位阶跃响应曲线
plot(t,y(:,1:3));grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);

% 图形设置
title('典型二阶系统比例微分控制的单位阶跃响应');
legend('τ=0','τ=0.2','τ=0.4');

5_2_5_2_01

实例 2 2 2:设系统的传递函数为: G ( s ) = 147.3 ( s + 1.5 ) ( s 2 + 2 s + 5 ) ( s 2 + 10 s + 26 ) ( s + 1.7 ) G(s)=\displaystyle\frac{147.3(s+1.5)}{(s^2+2s+5)(s^2+10s+26)(s+1.7)} G(s)=(s2+2s+5)(s2+10s+26)(s+1.7)147.3(s+1.5),分析主导极点,比较主导极点构成的系统与原系统的单位阶跃响应。

解:

由系统传递函数可得,系统的零极点如下:
p 1 , 2 = − 5 ± i , p 3 , 4 = − 1 ± 2 i , p 5 = − 1.7 , z 1 = − 1.5 p_{1,2}=-5±{\rm i},p_{3,4}=-1±2{\rm i},p_5=-1.7,z_1=-1.5 p1,2=5±ip3,4=1±2ip5=1.7z1=1.5
由主导极点定义可知,该系统主导极点为: p 3 , 4 = − 1 ± 2 i p_{3,4}=-1±2{\rm i} p3,4=1±2i

由主导极点构成的系统传递函数为: G ′ ( s ) = 5 s 2 + 2 s + 5 G'(s)=\displaystyle\frac{5}{s^2+2s+5} G(s)=s2+2s+55

% 实例Chapter5.2 2.5.2.02
clc;clear;

% 参数设置
K=147.3;
t=0:0.1:6;

% 传递函数分子分母多项式
num0=K*[1,1.5];num1=5;
den00=[1,2,5];den01=[1,10,26];den02=[1,1.7];

% 原系统传递函数和主导极点传递函数
sys0=tf(num0,conv(den00,conv(den01,den02)));
sys1=tf(num1,den00);

% 原系统和主导极点系统单位阶跃响应
y0=step(sys0,t);
y1=step(sys1,t);

% 绘制单位阶跃响应曲线
plot(t,y0,'r-',t,y1,'b-');grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);

% 图形设置
title('原系统和主导极点系统单位阶跃响应');
legend('原系统','主导极点系统');

5_2_5_2_02

实例 3 3 3:设系统的闭环传递函数为: G ( s ) = 500 ( s 2 + 10 s + 50 ) ( s + 10 ) G(s)=\displaystyle\frac{500}{(s^2+10s+50)(s+10)} G(s)=(s2+10s+50)(s+10)500,分析主导极点,比较由主导极点构成的系统与原系统的单位阶跃响应。

解:

由系统传递函数可得,系统的零极点: p 1 , 2 = − 5 ± 5 i , p 3 = − 10 p_{1,2}=-5±5{\rm i},p_3=-10 p1,2=5±5i,p3=10

由主导极点定义可知,该系统主导极点为: p 1 , 2 = − 5 ± 5 i p_{1,2}=-5±5{\rm i} p1,2=5±5i

由主导极点构成的系统传递函数为: G ′ ( s ) = 50 s 2 + 10 s + 50 G'(s)=\displaystyle\frac{50}{s^2+10s+50} G(s)=s2+10s+5050

建立 S I M U L I N K {\rm SIMULINK} SIMULINK模型:

13

S I M U L I N K {\rm SIMULINK} SIMULINK仿真结果:

14

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FUXI_Willard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值