该系列博客主要讲述 M A T L A B {\rm MATLAB} MATLAB软件在自动控制方面的应用,参考书籍:《 M A T L A B / S I M U L I N K {\rm MATLAB/SIMULINK} MATLAB/SIMULINK与控制系统仿真》。
2.MATLAB/SIMULINK在时域分析中的应用
2.1 时域分析中MATLAB函数的应用
-
单位阶跃响应函数 s t e p ( ) {\rm step()} step()。
# step()函数作用: # step()绘制出由向量num和den表示的连续系统的阶跃响应在指定时间内的波形图; # step()函数语法格式: # 语法格式1: y=step(num,den,t) # 参数说明: num:系统分子多项式系数向量; den:系统分母多项式系数向量; t:仿真时间向量; # 语法格式2: [y,x,t]=step(num,den) # 参数说明: num:系统分子多项式系数向量; den:系统分母多项式系数向量; t:时间向量,由系统模型特性自动生成; x:状态变量,返回空矩阵; # 语法格式3: [y,x,t]=step(A,B,C,D,iu) # 参数说明: A,B,C,D:系统的状态空间描述矩阵; iu:用来指明输入变量的序号; x:系统返回的状态轨迹;
-
单位脉冲响应函数 i m p u l s e ( ) {\rm impulse()} impulse()。
# impulse()函数作用: # impulse()函数绘出由向量num和den表示的连续系统在指定时间内的脉冲响应时域波形图; # impulse()函数语法格式: y=impulse(num,den,t) [y,x,t]=impulse(num,den) impulse(num,den),impulse(num,den,t) [y,x,t]=impulse(A,B,C,D,iu,t) impulse(A,B,C,D,iu),impulse(A,B,C,D,iu,t)
-
零输入响应函数 i n i t i a l ( ) {\rm initial()} initial()。
# initial()函数作用: # initial()函数求取连续系统零输入响应; # 当不带输出变量引用函数,initial()函数在当前窗口绘制系统零输入响应曲线; # 当带有输出变量引用函数,可得系统零输入响应的输出数据,不直接绘制曲线; # impulse()函数语法格式: intial(sys,x0),initial(sys,x0,t) [Y,T,X]=initial(sys,x0),[Y,T,X]=initial(sys,x0,t) # 参数说明: sys:线性时不变系统模型; x0:初始状态; t:指定的响应时间; Y:响应的输出; T:仿真的时间; X:系统的状态变量;
-
任意输入响应函数 l s i m ( ) {\rm lsim()} lsim()。
# lsim()函数作用: # lsim()函数用于求取任意输入响应。 # 当不带输出变量引用函数,lsim()函数在当前窗口绘制系统任意输入响应曲线; # 当带有输出变量引用函数,可得系统任意输入响应的输出数据,不直接绘制曲线; # lsim()函数语法格式: lsim(sys1,u,t),lsim(sys2,u,t,x0) [Y,T,X]=lsim(sys1,u,t),[Y,T,X]=lsim(sys2,u,t,x0) # 参数说明: u:输入信号; x0:初始条件; t:等间隔时间向量; sys1:tf()或zpk()模型; sys2:ss()模型; Y:响应的输出; T:仿真的时间; X:系统的状态变量;
2.2 时域响应实战
2.2.1 实例1
实验要求:已知系统的闭环传递函数为: G ( s ) = 1 s 2 + 0.4 s + 1 G(s)=\displaystyle\frac{1}{s^2+0.4s+1} G(s)=s2+0.4s+11,求单位阶跃和单位斜坡响应曲线。
解:
% 实例Chapter5.2 2.2.1
clc;clear;
num=[1];den=[1,0.4,1]; % 传递函数分子分母多项式系数向量
t=[0:0.1:10]; % 响应时间
u=t; % 单位斜坡输入
y=step(num,den,t); % 单位阶跃响应
yl=lsim(num,den,u,t); % 单位斜坡响应
plot(t,y,'b-',t,yl,'r:') % 绘制响应曲线
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);
grid
xlabel('时间/s');ylabel('c(t)');
title('单位阶跃和单位斜坡响应曲线');
legend('单位阶跃响应曲线','单位斜坡响应曲线');
2.2.2 实例2
实验要求:已知单位负反馈系统,开环传递函数为: G ( s ) = s + 2 s 2 + 10 s + 1 G(s)=\displaystyle\frac{s+2}{s^2+10s+1} G(s)=s2+10s+1s+2,系统输入信号如下图所示的三角波,求系统输出响应,将输入输出信号对比显示。
解:
% 实例Chapter5.2 2.2.2
clc;clear;
numg=[1,2];deng=[1,10,1]; % 开环传递函数
[num,den]=cloop(numg,deng,-1); % 单位负反馈闭环传递函数
% 三角波信号产生
v1=[0:0.1:1];
v2=[0.9:-0.1:-1];
v3=[-0.9:0.1:0];
u=[v1,v2,v3];
t=[0:0.1:4]; % 仿真时间
[y,x]=lsim(num,den,u,t); % 三角波的响应
plot(t,y,'b-',t,u,'r:'); % 绘制响应曲线
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);
xlabel('时间/s');ylabel('c(t)');
title('三角波输入和响应曲线');
legend('响应曲线','三角波信号');
2.2.3 实例3
已知单位负反馈系统,其开环传递函数为: G ( s ) = s + 2 s 2 + 10 s + 1 G(s)=\displaystyle\frac{s+2}{s^2+10s+1} G(s)=s2+10s+1s+2,系统输入信号如下图所示的锯齿波,用 S I M U L I N K {\rm SIMULINK} SIMULINK求系统输出响应,将输入输出信号作对比显示。
解:
# SIMULINK模型建立:
# 所需模块库:
# 锯齿波信号:Sources模块库下的Signal Generator模块;
# 传递函数模块:Continuous模块库下的Transfer Fcn模块;
# 示波器模块:Sinks模块库下的Scope模块;
# 相加器模块:Math Operations模块库下的Add模块;
# 向量串接函数:Math Operations模块库下的Vector Concatenate模块;
# 锯齿波信号模块参数设置:
# "Wave form":"sawtooth"(锯齿波);
# "Amplitude":1;
# "Frequency":1/4;
# "Units":"Hertz";
【 S I M U L I N K {\rm SIMULINK} SIMULINK模型】
【 S I M U L I N K {\rm SIMULINK} SIMULINK结果】
2.2.4 实例4
实验要求:已知单位负反馈系统,其开环传递函数为 G 1 ( s ) G_1(s) G1(s)和 G 2 ( s ) G_2(s) G2(s)的串联,其中: G 1 ( s ) = s + 5 ( s + 1 ) ( s + 3 ) G_1(s)=\displaystyle\frac{s+5}{(s+1)(s+3)} G1(s)=(s+1)(s+3)s+5、 G 2 ( s ) = s 2 + 1 s 2 + 4 s + 4 G_2(s)=\displaystyle\frac{s^2+1}{s^2+4s+4} G2(s)=s2+4s+4s2+1,系统输入信号为: r ( t ) = sin ( t ) r(t)=\sin(t) r(t)=sin(t),用 S I M U L I N K {\rm SIMULINK} SIMULINK求取系统输出响应,将输入和输出信号对比显示。
解:
# SIMULINK模型建立:
# 所需模块库:
# 正弦波信号:Sources模块库下的Sin Wave模块;
# 传递函数模块:Continuous模块库下的Transfer Fcn模块;
# 传递函数模块:Continuous模块库下的Zero-Pole模块;
# 示波器模块:Sinks模块库下的Scope模块;
# 相加器模块:Math Operations模块库下的Add模块;
# 向量串接函数:Math Operations模块库下的Vector Concatenate模块;
【 S I M U L I N K {\rm SIMULINK} SIMULINK模型】
【 S I M U L I N K {\rm SIMULINK} SIMULINK结果】
2.3 时域响应性能指标
# 编程法求解性能指标
# [y,t]=step(G)返回响应值y和相应的时间t,通过计算,可得时域性能指标;
# 1.峰值时间
[Y,k]=max(y) # 求出y的峰值和响应的时间
timetopeak=t(k) # 获得峰值时间
# 2.超调量
C=dcgain(G) # 求解系统的终值
[Y,k]=max(y) # 求解y的峰值及响应的时间
percentovershoot=100*(Y-C)/C # 计算超调量
# 3.上升时间
C=dcgain(G) # 求解系统的终值
n=1;
while y(n)<C # 求解输出第一次到达终值时的时间
n=n+1;
end
risetime=t(n)
# 输出无超调系统响应,上升时间定义:输出从稳态值的10%上升到90%所需时间;
C=dcgain(G) # 求解系统的终值
n=1;
while y(n)<0.1*C # 输出第一次到达终值的10%的时间
n=n+1;
end
m=1;
while y(m)<0.9*C # 输出第一次到达终值的90%的时间
m=m+1;
end
risetime=t(m)-t(n);
# 4.调节时间
C=dcgain(G);
i=length(t);
while (y(i)>0.98*C)&&(y(i)<1.02*C)
i=i-1;
end
settlingtime=t(i)
实例:已知二阶系统传递函数为: G ( s ) = 3 ( s + 1 − 3 i ) ( s + 1 + 3 i ) G(s)=\displaystyle\frac{3}{(s+1-3{\rm i})(s+1+3{\rm i})} G(s)=(s+1−3i)(s+1+3i)3,分别用游动鼠标法和编程法求解系统的性能指标。
解:
【解法 1 1 1】:游动鼠标法。
% 实例Chapter5.2 2.3 example
clc;clear;
G=zpk([],[-1+3*i,-1-3*i],3); % 控制系统模型
step(G); % 系统阶跃响应
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);
【用鼠标左键单击图中大概位置求解性能指标图】
【 M A T L A B {\rm MATLAB} MATLAB右键直接显示性能指标图】
【解法 2 2 2】:编程法。
% 实例Chapter5.2 2.3 example
clc;clear;
G=zpk([],[-1+3*i,-1-3*i],3); % 控制系统模型
C=dcgain(G); % 求取峰值
[y,t]=step(G);
% plot(t,y);
% grid;
[Y,k]=max(y);
timetopeak=t(k); % 峰值时间
percentovershoot=100*(Y-C)/C; % 超调量
% 上升时间
n=1;
while y(n)<C
n=n+1;
end
risetime=t(n);
% 调节时间
i=length(t);
while ((y(i)>0.98*C)&&(y(i)<1.02*C))
i=i-1;
end
settlingtime=t(i);
% 显示各项指标
C,timetopeak,percentovershoot,risetime,settlingtime
% 结果显示:
C =
0.3000
timetopeak =
1.0592
percentovershoot =
35.0670
risetime =
0.6447
settlingtime =
3.4999
2.4 二阶系统参数对时域响应性能的影响
2.4.1 闭环参数 ω n { \omega_n} ωn和 ζ {\rm \zeta} ζ的影响
实例:已知单位负反馈系统,其开环传递函数为: G ( s ) = ω n 2 s ( s + 2 ζ ω n ) G(s)=\displaystyle\frac{\omega_n^2}{s(s+2\zeta\omega_n)} G(s)=s(s+2ζωn)ωn2,其中: ω n = 1 , ζ \omega_n=1,\zeta ωn=1,ζ为阻尼比,绘制 ζ \zeta ζ分别为 0 、 0.2 、 0.4 、 0.6 、 0.9 、 1.2 、 1.5 0、0.2、0.4、0.6、0.9、1.2、1.5 0、0.2、0.4、0.6、0.9、1.2、1.5时单位负反馈系统的单位阶跃响应曲线。
解:
% 实例Chapter5.2 2.4.1
clc;clear;
% 固有频率和阻尼比定义
wn=1;
zeta=[0,0.2,0.4,0.6,0.9,1.2,1.5];
num=wn*wn;
% 将t在0-20间均等划分成200份
t=linspace(0,20,200);
for j=1:7
den=conv([1,0],[1,2*wn*zeta(j)]); % 开环传递函数分母多项式
G=tf(num,den); % 开环传递函数
sys=feedback(G,1); % 闭环传递函数
y(:,j)=step(sys,t); % 单位阶跃响应
end
plot(t,y(:,1:7));grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);
% 图形设置
title('典型二阶系统不同阻尼比单位阶跃响应');
legend('ζ=0','ζ=0.2','ζ=0.4','ζ=0.6','ζ=0.9','ζ=1.2','ζ=1.5');
【图形显示】
- t r , t p , t s {t_r,t_p,t_s} tr,tp,ts均与 ω n \omega_n ωn成反比, ω n \omega_n ωn越大,响应越快;
- ζ \zeta ζ是唯一决定超调量 σ % \sigma\% σ%的大小, ζ \zeta ζ是决定系统相对稳定性的唯一因素, ζ \zeta ζ越大, σ % \sigma\% σ%越小;
- ζ \zeta ζ为 0.4 ~ 0.9 0.4~0.9 0.4~0.9范围内,系统上升较快,超调量不太大;
- ζ = 2 2 = 0.707 \zeta=\displaystyle\frac{\sqrt{2}}{2}=0.707 ζ=22=0.707时,响应时间快,超调量为 4.3 % 4.3\% 4.3%,称此阻尼比为最佳阻尼,具有最佳阻尼的二阶系统称为二阶最佳系统;
2.4.2 开环参数 K K K和 T T T的影响
-
二阶系统可表示为:
G ( s ) = C ( s ) R ( s ) = K T s 2 + 1 T s + K T G(s)=\frac{C(s)}{R(s)}=\frac{\displaystyle\frac{K}{T}}{s^2+\displaystyle\frac{1}{T}s+\displaystyle\frac{K}{T}} G(s)=R(s)C(s)=s2+T1s+TKTK
可得:
K T = ω n 2 , 1 T = 2 ζ ω n ⇒ ω n = K T , ζ = 1 2 K T \frac{K}{T}=\omega_n^2,\frac{1}{T}=2\zeta\omega_n\Rightarrow\omega_n=\sqrt{\frac{K}{T}},\zeta=\frac{1}{2\sqrt{KT}} TK=ωn2,T1=2ζωn⇒ωn=TK,ζ=2KT1
其中: T T T称为时间常数, K K K为回路增益; -
T T T越小,则 ω n \omega_n ωn越大, ζ \zeta ζ越大,系统快速性和相对稳定性较好;
-
K K K越大,则 ω n \omega_n ωn越大, ζ \zeta ζ越小;
-
二阶最佳系统应有: K = 1 2 T K=\displaystyle\frac{1}{2T} K=2T1,该关系为二阶最佳参数关系;
实例:已知单位负反馈二阶系统,开环传递函数: G ( s ) = K s ( T s + 1 ) G(s)=\displaystyle\frac{K}{s(Ts+1)} G(s)=s(Ts+1)K,其中: T = 1 T=1 T=1,绘制 K K K分别为: 0.1 、 0.2 、 0.5 、 0.8 、 1.0 、 2.4 0.1、0.2、0.5、0.8、1.0、2.4 0.1、0.2、0.5、0.8、1.0、2.4时,其单位负反馈系统的单位阶跃响应曲线。
解:
% 实例Chapter5.2 2.4.2
clc;clear;
% 参数定义
T=1;
K=[0.1,0.2,0.5,0.8,1.0,2.4];
t=linspace(0,20,200);
% 开环传递函数分子分母多项式
num=1;den=conv([1,0],[T,1]);
for j=1:6
G=tf(num*K(j),den); % 开环传递函数
sys=feedback(G,1); % 单位负反馈传递函数
y(:,j)=step(sys,t); % 单位阶跃响应
end
plot(t,y(:,1:6));grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);
% 图形设置
title('典型二阶系统不同开环增益单位阶跃响应');
legend('K=0.1','K=0.2','K=0.5','K=0.8','K=1.0','K=2.4');
2.4.3 闭环极点分布对时域响应的影响
- 如果闭环极点位于虚轴上,则系统处于临界稳定状态;
- 如果闭环极点是负实数极点,则系统阶跃响应是单调的, σ % = 0 \sigma\%=0 σ%=0;
- 如果闭环极点是负实部共轭复根极点,则系统阶跃响应是衰减振荡的;
- 系统时域响应的快速性与闭环极点距虚轴的距离有关,距离越大,则 t s t_s ts越小;
- 如果系统有多个闭环极点,则距虚轴越近的闭环极点所起的作用越大;如果一个闭环极点距虚轴的距离比另一个闭环极点距虚轴的距离大 5 5 5倍或 5 5 5倍以上,则距离远的闭环极点可忽略;
2.5 改善系统时域响应性能的措施
2.5.1 输出微分反馈
输出微分反馈系统结构图如下图所示:
原开环传递函数可写为:
K
s
(
T
s
+
1
)
=
ω
n
2
s
(
s
+
2
ζ
ω
n
)
\frac{K}{s(Ts+1)}=\frac{\omega_n^2}{s(s+2\zeta\omega_n)}
s(Ts+1)K=s(s+2ζωn)ωn2
其中:
ω
n
\omega_n
ωn和
ζ
{\zeta}
ζ是
τ
=
0
\tau=0
τ=0时,原系统的固有频率和阻尼系数;
当
τ
≠
0
\tau≠0
τ=0,可得:
G
(
s
)
=
C
(
s
)
R
(
s
)
=
ω
n
2
s
2
+
2
(
ζ
+
1
2
τ
ω
n
)
s
+
ω
n
2
G(s)=\frac{C(s)}{R(s)}=\frac{\omega_n^2}{s^2+2(\zeta+\displaystyle\frac{1}{2}\tau\omega_n)s+\omega_n^2}
G(s)=R(s)C(s)=s2+2(ζ+21τωn)s+ωn2ωn2
加入微分反馈后,系统固有频率
ω
n
\omega_n
ωn不变,阻尼比提高,有:
ζ
′
=
ζ
+
1
2
τ
ω
n
\zeta'=\zeta+\displaystyle\frac{1}{2}\tau\omega_n
ζ′=ζ+21τωn;
实例:已知单位负反馈二阶系统,其中 T = 1 , K = 1 T=1,K=1 T=1,K=1,绘制 τ \tau τ分别为 0 、 0.05 、 0.2 、 0.5 、 1.0 、 2.4 0、0.05、0.2、0.5、1.0、2.4 0、0.05、0.2、0.5、1.0、2.4时,单位负反馈系统的单位阶跃响应曲线。
解:
% 实例Chapter5.2 2.5.1
clc;clear;
% 参数定义
T=1;K=1;
tau=[0,0.05,0.2,0.5,1.0,2.4];
t=linspace(0,20,200);
% 传递函数建立部分
num=1;
for j=1:6
den=conv([1,0],[T,1+tau(j)]);
G=tf(num*K,den); % 开环传递函数
sys=feedback(G,1); % 闭环传递函数
y(:,j)=step(sys,t);
end
% 绘制单位阶跃响应曲线
plot(t,y(:,1:6));grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);
% 图形设置
title('典型二阶系统输出微分反馈的单位阶跃响应');
legend('τ=0','τ=0.05','τ=0.2','τ=0.5','τ=1.0','τ=2.4');
2.5.2 比例微分控制
比例微分控制的二阶系统结构图如下图所示:
闭环传递函数为:
G
(
s
)
=
C
(
s
)
R
(
s
)
=
(
1
+
τ
s
)
ω
n
2
s
2
+
2
(
ζ
+
1
2
τ
ω
n
)
s
+
ω
n
2
G(s)=\frac{C(s)}{R(s)}=\frac{(1+\tau{s})\omega_n^2}{s^2+2(\zeta+\displaystyle\frac{1}{2}\tau\omega_n)s+\omega_n^2}
G(s)=R(s)C(s)=s2+2(ζ+21τωn)s+ωn2(1+τs)ωn2
比例微分控制可实现在不改变
ω
n
\omega_n
ωn的条件下提高系统阻尼比
ζ
′
=
ζ
+
1
2
τ
ω
n
\zeta'=\zeta+\displaystyle\frac{1}{2}\tau\omega_n
ζ′=ζ+21τωn,但比例微分在闭环传递函数中增加了一个零点
z
=
−
1
τ
z=-\displaystyle\frac{1}{\tau}
z=−τ1,此零点的存在,将使系统的上升加快,但
σ
%
\sigma\%
σ%也会增加,随
τ
\tau
τ的加大而加大;
实例 1 1 1:设系统闭环传递函数为: G ( s ) = 4 ( 1 + τ s ) s 2 + 2 s + 4 G(s)=\displaystyle\frac{4(1+\tau{s})}{s^2+2s+4} G(s)=s2+2s+44(1+τs),求 τ = 0 、 0.2 、 0.4 \tau=0、0.2、0.4 τ=0、0.2、0.4时,系统的单位阶跃响应。
解:
% 实例Chapter5.2 2.5.2.01
clc;clear;
tau=[0,0.2,0.4];
t=linspace(0,20,200);
num=4;den=[1,2,4];
% 传递函数建立
for j=1:3
sys=tf(conv(num,[tau(j),1]),den);
y(:,j)=step(sys,t);
end
% 绘制单位阶跃响应曲线
plot(t,y(:,1:3));grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);
% 图形设置
title('典型二阶系统比例微分控制的单位阶跃响应');
legend('τ=0','τ=0.2','τ=0.4');
实例 2 2 2:设系统的传递函数为: G ( s ) = 147.3 ( s + 1.5 ) ( s 2 + 2 s + 5 ) ( s 2 + 10 s + 26 ) ( s + 1.7 ) G(s)=\displaystyle\frac{147.3(s+1.5)}{(s^2+2s+5)(s^2+10s+26)(s+1.7)} G(s)=(s2+2s+5)(s2+10s+26)(s+1.7)147.3(s+1.5),分析主导极点,比较主导极点构成的系统与原系统的单位阶跃响应。
解:
由系统传递函数可得,系统的零极点如下:
p
1
,
2
=
−
5
±
i
,
p
3
,
4
=
−
1
±
2
i
,
p
5
=
−
1.7
,
z
1
=
−
1.5
p_{1,2}=-5±{\rm i},p_{3,4}=-1±2{\rm i},p_5=-1.7,z_1=-1.5
p1,2=−5±i,p3,4=−1±2i,p5=−1.7,z1=−1.5
由主导极点定义可知,该系统主导极点为:
p
3
,
4
=
−
1
±
2
i
p_{3,4}=-1±2{\rm i}
p3,4=−1±2i;
由主导极点构成的系统传递函数为: G ′ ( s ) = 5 s 2 + 2 s + 5 G'(s)=\displaystyle\frac{5}{s^2+2s+5} G′(s)=s2+2s+55;
% 实例Chapter5.2 2.5.2.02
clc;clear;
% 参数设置
K=147.3;
t=0:0.1:6;
% 传递函数分子分母多项式
num0=K*[1,1.5];num1=5;
den00=[1,2,5];den01=[1,10,26];den02=[1,1.7];
% 原系统传递函数和主导极点传递函数
sys0=tf(num0,conv(den00,conv(den01,den02)));
sys1=tf(num1,den00);
% 原系统和主导极点系统单位阶跃响应
y0=step(sys0,t);
y1=step(sys1,t);
% 绘制单位阶跃响应曲线
plot(t,y0,'r-',t,y1,'b-');grid;
set(findobj(get(gca,'Children'),'LineWidth',0.5),'LineWidth',1.5);
% 图形设置
title('原系统和主导极点系统单位阶跃响应');
legend('原系统','主导极点系统');
实例 3 3 3:设系统的闭环传递函数为: G ( s ) = 500 ( s 2 + 10 s + 50 ) ( s + 10 ) G(s)=\displaystyle\frac{500}{(s^2+10s+50)(s+10)} G(s)=(s2+10s+50)(s+10)500,分析主导极点,比较由主导极点构成的系统与原系统的单位阶跃响应。
解:
由系统传递函数可得,系统的零极点: p 1 , 2 = − 5 ± 5 i , p 3 = − 10 p_{1,2}=-5±5{\rm i},p_3=-10 p1,2=−5±5i,p3=−10;
由主导极点定义可知,该系统主导极点为: p 1 , 2 = − 5 ± 5 i p_{1,2}=-5±5{\rm i} p1,2=−5±5i;
由主导极点构成的系统传递函数为: G ′ ( s ) = 50 s 2 + 10 s + 50 G'(s)=\displaystyle\frac{50}{s^2+10s+50} G′(s)=s2+10s+5050;
建立 S I M U L I N K {\rm SIMULINK} SIMULINK模型:
S I M U L I N K {\rm SIMULINK} SIMULINK仿真结果: