手势识别技术综述

本文概述了手势识别技术,特别是基于视觉的手势识别系统。手势识别是人机交互的重要组成部分,通过接触式和非接触式传感器进行数据采集。文章介绍了数据手套、加速度计、触摸屏以及摄像头和雷达探测等技术在手势识别中的应用,同时讨论了基于视觉的手势识别系统的基本阶段:检测、跟踪和识别。提到的系统包括CyberGlove II、Kinect和Project Soli等,这些技术为自然、直观的人机交互提供了可能。
摘要由CSDN通过智能技术生成

hj961107@163.com

https://blog.csdn.net/qq_39033834

随着计算机在社会中的普及,促进人机交互(HCI,Human–Computer Interaction)技术的发展将对计算机的使用产生积极影响。因此,人们越来越重视研究用于跨域人机障碍的新技术。研究的最终目标是将人机交互变得如同人与人交互一样自然。长期以来,手势一直被认为是一种可以提供更自然、更有创意和更直观的与我们的计算机进行通信的交互技术。为此,在人机交互中加入手势是一个重要的研究领域。

在这里简单说一些手势识别的技术,鄙人还是一个小白,还请各位大佬原谅我给这篇文章取了一个“综述”的名字。


目录

手势识别技术综述

1.手势识别综述

2.基于视觉的手势识别系统综述

3.参考文献


1.手势识别综述

手势识别这个术语指的是跟踪人类手势、识别其表示和转换为语义上有意义的命令的整个过程[1]。手势识别的研究旨在设计和开发可以将用于设备控制的手势识别为输入并且通过将命令映射为输出的系统。一般而言,从手势交互信息采集的途径是接触式还是非接触式的,可将手势交互系统划分为基于接触式的传感器和基于非接触类的传感器的两类。

基于接触式传感器的手势识别通常基于使用多个传感器的数据手套、加速度计、多点触摸屏等技术。2004年,Kevin[2]等人设计了一种用于手势识别的无线仪器手套“CyberGlove II”。2008年,北京航空航天大学的任程[3]等人用头盔和数据手套研究了虚拟现实系统中的虚拟手。2015年,山东师范大学的吕蕾[4]等人研究了基于数据手套的静态手势识别方法,能识别25种手势,正确率达98.9%。2007年,Bourke[5]等人提出了一种用加速度计来检测在我们的日常活动中使用的正常手势的识别系统。2017年,电子科技大学的王琳琳[6]等人研究了基于惯性传感器的手势交互方法,准确率达96.7%。2014年,中国科学院大学的薛姣[8]等人研究了一种基于触摸屏的手势遥控系统,平均识别率达99%。

基于非接触式传感器的手势识别通常基于使用光学传感、雷达探测等技术。2002年,Bretzner[9]等人提出了使用摄像头采集多尺度颜色特征的手势识别。2010年,清华大学的沙亮[10]等人研究了基于无标记全手势视觉的人机交互技术,提出了一种使用通用摄像头的车载手势视觉交互系统的解决方案,复杂环境识别率达80%。2011年,微软公司[11]公布了Kinect,该摄像头可以借助红外线来识别手势运动。2015年,江南大学的姜克[12]等人使用Kinect研究了基于深度图像的3D手势识别,识别率达76.6%。2015年,谷歌ATAP部门[13]公布了Project Soli,该项目采用微型雷达来识别手势运动,可以捕捉微小动作。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值