MNIST手写数字识别:TensorFlow实现
一、内容
本节将和大家学习如何使用TensorFlow实现一个简单的卷积神经网络,使用的数据集是手写数字数据集MNIST(Mixed National Institute of Standards and Technology database ),一个非常简单的机器视觉数据集,它由7万张28像素x28像素的手写数字组成,这些图片只包含灰度值信息。我们的任务就是对这些手写数字的图片进行分类,转成0~9一共10类。训练集有55000个样本,测试集有 10000样本,同时验证集有5000个样本。每一个样本都有它对应的标注信息,即label。预期可以达到99.2%左右的准确率。本节将使用两个卷积层加一个全连接层构建一个简单但是非常有代表性的卷积神经网络。
二、代码
# 从TensorFlow自带的数据集导入MNIST数据集
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
# 设置存储路径,进行onehot编码
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()
# 定义权重变量
def weight_variable(shape):
# 初始值为截断正态分布噪声,标准差为0.1
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
# 定义偏置变量
def bias_variable(shape):
# 初始值为0.1常量,避免ReLu时的死亡节点
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# 定义卷积函数
def conv2d(x, W):
# 步长为1,SAME填充
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# 定义最大池化函数
def max_pool_2x2(x):
# 2*2最大池化,SAME填充
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
# 设置图像和标签占位符
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
# 将1维输入转换为2维图像,-1代表样本数量不定
x_image = tf.reshape(x, [-1, 28, 28, 1])
# 第一层卷积核32个5*5,1个通道
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
# ReLu激活
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# 第二层卷积核64个5*5,32个通道
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
# ReLu激活
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# 全连接层,1024个节点(7*7*64为上一层输出)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
# # 将2维图像转换为1维
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# ReLu激活
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# 设置dropout占位符
keep_prob = tf.placeholder(tf.float32)
# dropout
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# 定义节点,输出10类
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# softmax激活
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
# 定义loss
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
# 定义优化器Adam,学习率为1e-4
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 定义正确率预测
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 开始训练
tf.global_variables_initializer().run()
# 迭代20000次
for i in range(20000):
# 设置大小为50的mini-batch
batch = mnist.train.next_batch(50)
# 每训练100次,进行一次评测
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
# 训练
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
# 打印测试集的正确率
print("test accuracy %g" % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
三、结果
1.训练集
2.测试集
最后,这个CNN模型可以得到的准确率约为99.2%,基本可以满足对手写数字识别准确率的要求。这其中主要的性能提升都来自更优秀的网络设计,即卷积神经网络对图像特征的提取和抽象能力。依靠卷积核的权值共享,CNN的参数量并没有爆炸,降低计算量的同时也减轻了过拟合,因此整个模型的性能有较大的提升。本节我们只学习实现了一个简单的卷积神经网络,接下来,我们将学习一些稍微复杂的卷积神经网络。