文章目录
Look Before You Leap: Confirming Edge Signs in Random Walk with Restart for Personalized Node Ranking in Signed Networks
题目:《三思后行:在重启随机游走种确认边符号,用户符号网络中的个性化节点排名》
作者:Wonchang Lee, Yeon-Chang Lee, Dongwon Lee, Sang-Wook Kim
来源:SIGIR‘21
代码:http://github.com/wonchang24/OBOE
关键词:personalized node ranking; signed networks; balance theory
研究对象
在本文中,我们解决了有符号网络的个性化节点排序问题(PNR),该问题的目标是在有符号网络中按 照与给定种子节点最相关的顺序,对节点进行排序。考虑以下两个因素:
- 网络的结构
- 种子节点的连通性
相关工作
传统方法
最近的工作
最近提出的PNR方法引入了有符号随机游走者的概念,简称为SRSurfer,利用平衡理论在节点之间进行 分数传播。在有符号网络的实际设置中,边的关系往往没有严格遵循平衡理论的规则。因此,基于 SRSurfer的PNR方法经常会对节点进行错误的评分传播,从而降低了PNR的准确性。
作者的方法
作者提出了一种新的基于随机游走的符号验证PNR方法,命名为OBOE。简单来说,OBOE利用节点的拓扑特征,仔细验证SRSurfer的分数传播。然后,OBOE利用给定网络的统计数据对所有不正确的分数传播案例进行修正。
方法的细节
- r y + {\bf{r}}^+_y ry+ 和 r y − {\bf{r}}^-_y ry− 分别表示 n x {\bf{n}}_x nx 和 n y {\bf{n}}_y ny 之间的边关系为正号和负号的可能性(用OBOE测量)
- 如果 x = y,则 r y + {\bf{r}}^+_y ry+ 和 r y − {\bf{r}}^-_y ry− 的初始值设为1和0。否则的话, r y + {\bf{r}}^+_y ry+ 和 r y − {\bf{r}}^-_y ry− 的初始值都设为0。
图a:
- 通过OBOE的分数传播策略, n y {\bf{n}}_y ny 已经收到了之前访问过的节点 n j {\bf{n}}_j nj 的分数;
- 图中 n y {\bf{n}}_y ny 与 n z {\bf{n}}_z nz 之间的正边关系是给定的;
- 游走者将按照某一概率游走到 n z {\bf{n}}_z nz ,此时会按照OBOE的策略,将 r y + {\bf{r}}^+_y ry+ 和 r y − {\bf{r}}^-_y ry− 传播给 n z {\bf{n}}_z nz 。
图b:
- (朋友的朋友是朋友)如果 n y {\bf{n}}_y ny 与 n z {\bf{n}}_z nz 之间的边号是正的,OBOE会按照平衡理论的方式将 r y + {\bf{r}}^+_y ry+ 传播到 r z + {\bf{r}}^+_z rz+ ;
- (朋友的敌人是敌人)如果 n y {\bf{n}}_y ny 与 n z {\bf{n}}_z nz 之间的边号是负的,OBOE会按照平衡理论的方式将 r y − {\bf{r}}^-_y ry− 传播到 r z − {\bf{r}}^-_z rz− ;
- 同理,按照平衡理论:敌人的朋友是敌人,敌人的敌人是朋友。
- 图b想表达的意思是平衡理论是有可能出错的,真正的关系应该是怎样呢?
图c:
- 为了验证平衡理论是否出错,OBOE会按照图本身的拓扑结构对 n x {\bf{n}}_x nx 与 n z {\bf{n}}_z nz 的关系进行预测;
图d:
- 如果验证平衡理论正确,则按照平衡理论将分数进行传播;
- 如果验证平衡理论不正确,OBOE会按照某一比值将 r y + {\bf{r}}^+_y ry+ 传播到 r z + {\bf{r}}^+_z rz+ 和 r z − {\bf{r}}^-_z rz− ;同理, r y − {\bf{r}}^-_y ry− 也会被传播到 r z + {\bf{r}}^+_z rz+ 和 r z − {\bf{r}}^-_z rz− 。
关联规则:给定一个交易数据库D,其中每个事务t是I的非空子集,即,每一个交易都与一个唯一 的标识符TID(Transaction ID)对应。关联规则在D中的支持度(support)是D中事务同时包含X、Y的 百分比,即概率;置信度(confidence)是D中事务已经包含X的情况下,包含Y的百分比,即条件概率。如果满足最小支持度阈值和最小置信度阈值,则认为关联规则是有趣的。这些阈值是根据挖掘需要人为设定。
迭代算法
收敛性证明