文献整理|AAAI24、IJCAI24、ICLR24中股价预测以及金融数据分析的论文

AAAI

  • MASTER: Market-Guided Stock Transformer for Stock Price Forecasting. Li, Tong and Liu, Zhaoyang and Shen, Yanyan and Wang, Xue and Chen, Haokun and Huang, Sen. AAAI, 2024. [(PDF)](MASTER_Market-Guided Stock Transformer for Stock Price Forecasting.pdf) (DOI) (Cited by 7 till 2024/9/23)

    《MASTER: 用于股价预测的市场导向的股票Transformer》

    Shanghai Jiao Tong University & Alibaba Group

    1. Objective: joint stock price forecasting

    2. Background: 股票市场具有高波动性,当前的工作只考虑源于所有输入股票特征的时间一致的股票相关性。

    3. Challenges: i) 股票相关性经常以跨时间的方式随时发生。ii) 特征有效性是随市场变化而动态变化的,市场变化影响股票序列模式及其相关性。

    4. Method: i) MASTER由五个步骤组成,市场导向门控、股票内汇总、股票间汇总、时间汇总和预测。ii) 引入了一种门控机制,能够集成了市场信息,可自动选择相关特征并适应不断变化的市场场景。iii) 能够模拟瞬时和跨时间的股票相关性,并利用市场信息进行自动特征选择。MASTER通过交替进行股票内和股票间信息聚合,巧妙地处理了复杂的股票相关性。

      在这里插入图片描述

      在这里插入图片描述

  • The Causal Impact of Credit Lines on Spending Distributions. Li, Yijun and Leung, Cheuk Hang and Sun, Xiangqian and Wang, Chaoqun and Huang, Yiyan and Yan, Xing and Wu, Qi and Wang, Dongdong and Huang, Zhixiang. AAAI, 2024. [(PDF)](The Causal Impact of Credit Lines on Spending Distributions.pdf) (DOI) (Cited by 0 till 2024/9/24)

    《信贷额度对支出分配的因果影响》

    City University of Hong Kong & Xi’an Jiaotong Liverpool University & Renmin University of China & JD Digits

    1. Objective: 研究信贷额度对花费的因果影响

    2. Background: 电子商务平台提供的消费信贷服务有可能刺激销售。为了研究信贷额度对花费的因果影响,先前的研究并没有把个体的花费看作是一种分布,这种分布可以捕捉不同订单的花费范围和模式。导致分布中蕴含的有价值的见解可能会被忽略。

      在这里插入图片描述

      两位消费者的平均花费在信贷额度提升前后保持一致。

      Consumer A的所有消费商品的花费都随着信贷额度提升了20dollars。

      Consumer B在保持原有消费水平下增加了对奢侈品的购买。

    3. Challenges: i) how can we perform causal inference when the outcome of each individual is a distribution? ii) how the changes of credit lines affect the shift of spending distributions.

    4. Method: i) 为目标量提出三种估计量(即DR、IPW和DML估计量)。ii) 提出了一种深度学习模型“NFR Net”来学习函数输出和标量输入之间的关系,现有的工作通过线性或参数化函数来捕捉这种关系。

  • StockMixer: A Simple Yet Strong MLP-Based Architecture for Stock Price Forecasting. Fan, Jinyong and Shen, Yanyan. AAAI, 2024. [(PDF)](StockMixer_A Simple Yet Strong MLP-Based Architecture for Stock Price Forecasting.pdf) (DOI) (Cited by 2 till 2024/9/25)

    《StockMixer: 一个简单而强大的基于MLP的股票价格预测架构》

    Shanghai Jiao Tong University

    1. Objective: 股票价格预测

    2. Background: 先前工作提出的架构难以优化,并且性能通常会受到有限股票数据的影响。

    3. Method: i) 提出了一个简单的基于MLP的结构StockMixer,它易于优化,具有很强的预测性能。ii) StockMixer执行指标混合、时间混合、股票混合。

      在这里插入图片描述

      在这里插入图片描述

      所提出的time mixing更符合现实直觉。

  • CI-STHPAN: Pre-trained Attention Network for Stock Selection with Channel-Independent Spatio-Temporal Hypergraph. Xia, Hongjie and Ao, Huijie and Li, Long and Liu, Yu and Liu, Sen and Ye, Guangnan and Chai, Hongfeng. AAAI, 2024. [(PDF)](CI-STHPAN_Pre-trained Attention Network for Stock Selection with Channel-Independent Spatio-Temporal Hypergraph.pdf) (DOI) (Cited by 3 till 2024/9/25)

    《CI-STHPAN: 基于独立通道时空超图预训练注意力网络的股票选择》

    Fudan University

    1. Objective: 量化股票选择

    2. Background: i) 现有的研究依赖于通道混合方法,加剧了金融时间序列中分布转移的问题。ii) 难以处理超长序列。iii) 难以捕捉动态和高度波动的股票市场。

      在这里插入图片描述

    3. Method: i) 提出了一种名为CI-STHPAN(Channel-Independent based Spatio-Temporal Hypergraph Pre-trained Attention Networks)的新型两阶段股票选择框架。ii) 第一阶段是使用基于Transformer和HGAT的股票时间序列自监督预训练。iii) 第二阶段是基于股票排名的下游任务微调。iv) 该框架通过动态时间弯曲(Dynamic Time Warping, DTW)计算不同通道股票时间序列的相似性,并构建基于相似性的通道独立股票动态超图。

      在这里插入图片描述

      在这里插入图片描述

  • MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive and Dynamic Stock Investment Prediction. Qian, Hao and Zhou, Hongting and Zhao, Qian and Chen, Hao and Yao, Hongxiang and Wang, Jingwei and Liu, Ziqi and Yu, Fei and Zhang, Zhiqiang and Zhou, Jun AAAI, 2024. [(PDF)](MDGNN_Multi-Relational Dynamic Graph Neural Network for Comprehensive and Dynamic Stock Investment Prediction.pdf) (DOI) (Cited by 0 till 2024/9/26)

    《MDGNN: 用于全面和动态股票投资预测的多关系动态图神经网络》

    Ant Group & Alibaba Group

    1. Objective:捕捉股票价格变动的多方面和时间影响,基于股票的表示来估计给定股票在交易日t产生正收益的概率。

    2. Background:股票市场是金融系统的重要组成部分,但预测股票价格的变动非常具有挑战性。这主要是因为股票价格受到诸如经济指标、财务报告、全球新闻和投资者情绪等多种因素的动态和复杂关系的影响。传统的序列方法和基于图的模型已经被应用于股票价格预测,但它们在捕捉股票价格变动的多面性和时间影响方面存在局限性。

    3. Method:为了解决这些挑战,文章提出了MDGNN框架,它使用离散动态图来全面捕捉股票及其随时间演变的多方面关系。该框架通过多关系图嵌入层生成的表示,提供了对股票及其相关实体之间相互关系的完整视角。此外,文章利用Transformer结构的力量来编码多重关系的时序演变,为股票投资预测提供了一种动态而有效的方法。

      在这里插入图片描述

      • 日内图快照:在每个交易日内,构建图快照并使用图嵌入层来捕获节点表示。
      • 日间时序提取层:使用Transformer结构来提取时间窗口内图快照的时序演变。
  • Market-GAN: Adding Control to Financial Market Data Generation with Semantic Context. Xia, Haochong and Sun, Shuo and Wang, Xinrun and An, Bo. AAAI, 2024. [(PDF)](Market-GAN_Adding Control to Financial Market Data Generation with Semantic Context.pdf) (DOI) (Cited by 1 till 2024/9/26)

    《Market-GAN: 通过语义上下文增加对金融市场数据生成的控制》

    Nanyang Technological University

    本文的主要内容可以概括为以下几个部分:

    1. Objective:本文旨在解决金融市场数据生成中缺乏语义上下文的问题,从而提高数据生成的准确性、可控性和多样性,以支持下游金融应用。

    2. Background:金融市场模拟器在提高预测准确性、风险管理和战略金融决策中发挥着重要作用。然而,现有的金融市场模拟方法通常难以适应特定的模拟上下文。

    3. Challenges: i) current financial datasets do not contain context labels; ii) current techniques are not designed to generate financial data with context as control, which demands greater precision compared to other modalities; iii) the inherent difficulties in generating context-aligned, high-fidelity data given the non-stationary, noisy nature of financial data.

    4. Method:i) 构建了一个包含市场动态、股票代码和历史状态作为上下文的上下文市场数据集(Contextual Market Dataset),利用结合了线性回归和聚类的市场动态建模方法提取市场动态。ii) 提出了Market-GAN,这是一个新颖的混合架构,结合了生成对抗网络(GAN)用于可控上下文生成、自编码器用于学习低维特征,以及监督器用于知识转移。iii) 设计了一个两阶段训练方案,以确保Market-GAN能够捕获市场内在分布,包括预训练和对抗训练阶段,以更好地初始化生成器。iv) 提出了一套全面的评估指标,考虑了对齐、保真度、数据在下游任务中的可用性以及市场事实。

      在这里插入图片描述

      在这里插入图片描述

      在这里插入图片描述

IJCAI

  • Automatic De-Biased Temporal-Relational Modeling for Stock Investment Recommendation. Weijun Chen, Shun Li, Xipu Yu, Heyuan Wang, Wei Chen, Tengjiao Wang. IJCAI, 2024. [(PDF)](Automatic De-Biased Temporal-Relational Modeling for Stock Investment Recommendation.pdf) (DOI) (Cited by 0 till 2024/9/26)

    《股票投资推荐的自动去偏时间关系建模》

    Peking Univeristy & Univesity of International Relations & New York University

    1. Objective:提高股票投资推荐的准确性。该模型旨在通过有效的学习时间关系模式,来指导投资决策和组合管理。

    2. Background:股票市场具有低信噪比(SNR)和由不恰当的关系拓扑和传播机制引起的关系偏差。此外,宏观市场情景的分布变化使得模型的泛化能力受限。

    3. Method: i) 元学习架构:通过双阶段训练过程,内部部分改善时间关系偏差,外部元学习器对抗分布变化。ii) 自动对抗样本生成:通过对抗训练,自适应地指导模型减轻偏差,提高其分析能力。iii) 全局-局部交互:帮助从局部和全局分布角度寻找相对不变的股票嵌入,以缓解分布变化。iv) 采用了时间对抗训练和关系对抗训练来增强模型对时间偏差和关系偏差的鲁棒性,并通过外层元学习器来处理分布变化问题。

    在这里插入图片描述

  • IMM: An Imitative Reinforcement Learning Approach with Predictive Representation Learning for Automatic Market Making. Hui Niu, Siyuan Li, Jiahao Zheng, Zhouchi Lin, Bo An, Jian Li, Jian Guo. IJCAI, 2024. [(PDF)](IMM_An Imitative Reinforcement Learning Approach with Predictive Representation Learning for Automatic Market Making…pdf) (DOI) (Cited by 0 till 2024/9/26)

    《IMM:用于自动做市商的一种结合预测性表征学习的模仿强化学习方法》

    Tsinghua University & Harbin Institute of Technology & Nanyang Technological University

    1. Objective: 解决现有基于强化学习的做市商(Market Making, MM)方法在处理多价格水平策略时面临的挑战,包括频繁的订单取消、失去队列优先权、以及复杂的多价格水平动作空间导致的有效训练问题。

    2. Background: 做市商在金融市场中扮演着重要角色,他们通过在限价单簿(Limit Order Book, LOB)上同时放置买卖订单来提供流动性,并从中获利。传统的MM方法依赖于具有强假设的数学模型,而近年来,强化学习(Reinforcement Learning, RL)作为一种有前景的方法,能够适应市场动态变化。然而,大多数基于RL的MM研究集中在优化单价格水平策略上,这些策略在实际交易中由于不稳定的参考价格导致频繁和不必要的订单取消。相比之下,涉及多个价格水平的策略更符合实际交易场景,但同时也带来了训练上的挑战。

    3. Method: 为了克服这些挑战,作者提出了一种新的框架IMM,旨在通过结合模仿学习和预测性表征学习来优化多价格水平的做市策略。i) 状态和动作的定义:定义了有效的状态和动作空间,以编码有关多价格水平订单的信息。ii) 表示学习单元(State Representation Learning Unit, SRLU):通过结合多粒度预测信号作为辅助变量,并使用时序卷积和空间注意力(Temporal Convolution and Spatial Attention, TCSA)网络从嘈杂的市场数据中提取表征。iii) 模仿学习单元(Imitative Reinforcement Learning Unit, IRLU):基于预测信号设计专家策略,并通过结合RL和模仿学习技术来训练代理,实现高效学习。iv) 专家策略:提出了基于预测信号的专家策略,以指导在复杂交易环境中的有效探索。

      在这里插入图片描述

  • RSAP-DFM: Regime-Shifting Adaptive Posterior Dynamic Factor Model for Stock Returns Prediction. Quanzhou Xiang, Zhan Chen, Qi Sun, Rujun Jiang. IJCAI, 2024. [(PDF)](RSAP-DFM_Regime-Shifting Adaptive Posterior Dynamic Factor Model for Stock Returns Prediction.pdf) (DOI) (Cited by 0 till 2024/9/26)

    《股票收益预测的制度转移自适应后验动态因子模型》

    Fudan University

    1. Objective:结合宏观经济信息和机器学习技术,旨在提高股票回报预测的准确性和鲁棒性。

    2. Background:资产定价是现代金融研究的核心主题之一,它试图解释不同资产预期回报的差异。传统的资产定价模型正逐渐被动态因子模型所取代,后者能够更好地捕捉投资表现的时间变化性。机器学习方法,如深度学习,可以通过非线性网络捕捉复杂的金融关系,但现有的模型在解释宏观经济状态对投资决策影响方面存在不足。

    3. Method:i) 提出了RSAP-DFM模型,这是一个基于连续机制的动态因子模型,它通过双重机制转换自适应地提取宏观经济信息,并将其映射到股票回报上。ii) 使用GRU模型从股票时间序列数据中提取隐藏特征。iii) 引入了一种新的机制转换识别方法,分别应用于因子回报和因子载荷,以增强当前因子状态识别的精确度。iv) 先验因子编码器: 利用多头注意力机制动态生成并从正态分布中抽样因子,这些因子是动态因子模型中的关键组成部分。v) 通过对抗学习进一步修改因子选择和因子回报,增强因子构建的鲁棒性。vi) 训练采用两阶段优化方法,通过对抗学习优化后验因子,提高模型在主任务上的性能。

      在这里插入图片描述

    4. Note: 因子模型(Factor Model)是一种统计模型,用于描述和预测资产(如股票、债券等)回报的变化。它基于这样一个假设:资产的回报可以通过一些共同的、不可见的因子来解释。这些因子代表了影响资产回报的宏观经济、市场或技术因素。

  • Trade When Opportunity Comes: Price Movement Forecasting via Locality-Aware Attention and Iterative Refinement Labeling. Liang Zeng, Lei Wang, Hui Niu, Ruchen Zhang, Ling Wang, Jian Li. [(PDF)](Trade When Opportunity Comes_Price Movement Forecasting via Locality-Aware Attention and Iterative Refinement Labeling…pdf) (DOI) (Cited by 0 till 2024/9/26)

    《把握时机进行交易:通过局部感知注意力和迭代细化标记的价格运动预测》

    Tsinghua University & Huatai Securities Co., Ltd, China

    1. Objective:解决金融数据中极低的信噪比和随机性问题,通过仔细选择潜在的有利样本来提高预测的准确性。

    2. Background:金融资产价格运动预测是一个基于当前市场信息预测金融资产趋势的领域,机器学习方法在这方面取得了有希望的进展。然而,现有的大多数机器学习方法难以处理金融数据的极低信噪比和随机性,常常将噪声误认为是真正的交易信号。此外,金融时间序列数据的相关性不是独立的,而是强烈且时间上相关的,这使得从整个训练数据集中选择潜在有利样本变得非常困难。

    3. Method: i) LA-Attention(局部感知注意力):通过度量学习技术增强,自动通过掩蔽注意力机制和特定任务的距离度量提取潜在的有利样本。RA-Labeling(迭代细化标记):进一步迭代地细化潜在有利样本的噪声标签,并结合学到的预测因子,以提高对未见过和噪声样本的鲁棒性。

      在这里插入图片描述

ICLR

  • Generative Learning for Financial Time Series with Irregular and Scale-Invariant Patterns. Huang, Hongbin and Chen, Minghua and Qiao, Xiao. ICLR, 2024. [(PDF)](Generative Learning for Financial Time Series with Irregular and Scale-Invariant Patterns.pdf) (DOI) (Cited by 6 till 2024/9/27)

    《具有不规则和尺度不变模式的金融时间序列的生成学习》

    City University of Hong Kong

    1. Objective: 解决金融时间序列数据生成中的一个关键问题:如何合成具有不规则和尺度不变模式的金融时间序列数据。

    2. Background: 金融时间序列数据的生成对于深度学习模型的训练至关重要,但由于金融数据的不规则性和尺度不变性,使得现有的数据生成方法难以有效捕捉其复杂模式。不规则性意味着模式的出现没有固定的时间间隔,而尺度不变性则意味着相同模式在不同的时间段内可能会有不同的持续时间和幅度。现有的生成方法通常假设数据具有规律性和一致性,这限制了它们在金融时间序列数据生成上的应用。

    3. Method: 为了克服这些挑战,作者提出了一个名为FTS-Diffusion的生成框架,该框架由三个主要模块构成:i) Pattern Recognition Module(模式识别模块):采用尺度不变子序列聚类(SISC)算法,通过动态时间弯曲(DTW)技术来识别时间序列中的不规则和尺度不变模式。ii) Pattern Generation Module(模式生成模块):利用基于扩散的生成网络,合成识别出的模式片段。这一模块包括一个去噪扩散概率模型(DDPM),用于学习从潜在的高斯空间到模式空间的映射。iii) Pattern Evolution Module(模式演变模块):通过模式转换网络,预测连续模式之间的转换概率,以模拟时间序列中的模式演变。

      在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值