贪心算法理论基础
- 贪心的本质是选择每一阶段的局部最优,从而达到全局最优
- 贪心算法并没有固定的套路,说白了就是常识性推导加上举反例。
- 验证是否可以使用贪心算法的策略是举反例,如果找不到反例,就可以试一试贪心算法。
- 贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
leetcode 455. 分发饼干
题目链接:分发饼干
版本一:
大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
遍历顺序:先遍历胃口,后遍历饼干,从大到小遍历。
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int index = s.size() - 1; // 饼干数组的下标
int result = 0;
for (int i = g.size() - 1; i >= 0; i--) //遍历胃口
{
if (index >= 0 && s[index] >= g[i]) //遍历饼干,index控制饼干数组的遍历,遍历饼干没有再起一个for 循环,而是采用自减的方式
{
result++;
index--;
}
}
return result;
}
};
时间复杂度:O(nlogn)
空间复杂度:O(1)
版本二:
另一个思路是小饼干先喂饱小胃口,此时遍历顺序发生了变化:先遍历饼干,再遍历胃口,从小到大遍历。
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(),g.end());
sort(s.begin(),s.end());
int index = 0;
for(int i = 0; i < s.size(); i++) { // 饼干
if(index < g.size() && g[index] <= s[i]){ // 胃口
index++;
}
}
return index;
}
};
时间复杂度:O(nlogn)
空间复杂度:O(1)
leetcode 376. 摆动序列
题目链接:摆动序列
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
本题求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了。
计算是否有峰值的时候,遍历的下标 i ,计算 prediff(nums[i] - nums[i-1])
和 curdiff(nums[i+1] - nums[i])
,如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 就有波动就需要统计。
本题还需要考虑以下三种情况:
- 情况一:上下坡中有平坡
- 情况二:数组首尾两端
- 情况三:单调坡中有平坡
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
int curDiff = 0; // 当前一对差值
int preDiff = 0; // 前一对差值
int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值,考虑到情况二
for (int i = 0; i < nums.size() - 1; i++) {
curDiff = nums[i + 1] - nums[i];
// 出现峰值
if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) //等号是考虑到情况一
{
result++;
preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff,考虑到情况三
}
}
return result;
}
};
leetcode 53. 最大子序和
题目链接:最大子序和
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小
全局最优:选取最大“连续和”
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = INT32_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count += nums[i];
if (count > res) { //取区间累计的最大值(相当于不断确定最大子序终止位置)
res = count;
}
if (count <= 0) count = 0; //相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
}
return res;
}
};
时间复杂度:O(n)
空间复杂度:O(1)