代码随想录第三十一天——分发饼干,摆动序列,最大子序和

贪心算法理论基础

  • 贪心的本质是选择每一阶段的局部最优,从而达到全局最优
  • 贪心算法并没有固定的套路,说白了就是常识性推导加上举反例。
  • 验证是否可以使用贪心算法的策略是举反例,如果找不到反例,就可以试一试贪心算法。
  • 贪心算法一般分为如下四步:
    1. 将问题分解为若干个子问题
    2. 找出适合的贪心策略
    3. 求解每一个子问题的最优解
    4. 将局部最优解堆叠成全局最优解

leetcode 455. 分发饼干

题目链接:分发饼干

版本一:

大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
遍历顺序:先遍历胃口,后遍历饼干,从大到小遍历。

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) //遍历胃口
        { 
            if (index >= 0 && s[index] >= g[i]) //遍历饼干,index控制饼干数组的遍历,遍历饼干没有再起一个for 循环,而是采用自减的方式
            {   
                result++;
                index--;
            }
        }
        return result;
    }
};

时间复杂度:O(nlogn)
空间复杂度:O(1)

版本二:

另一个思路是小饼干先喂饱小胃口,此时遍历顺序发生了变化:先遍历饼干,再遍历胃口,从小到大遍历。

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(),g.end());
        sort(s.begin(),s.end());
        int index = 0;
        for(int i = 0; i < s.size(); i++) { // 饼干
            if(index < g.size() && g[index] <= s[i]){ // 胃口
                index++;
            }
        }
        return index;
    }
};

时间复杂度:O(nlogn)
空间复杂度:O(1)

leetcode 376. 摆动序列

题目链接:摆动序列
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
本题求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了。
计算是否有峰值的时候,遍历的下标 i ,计算 prediff(nums[i] - nums[i-1])curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 就有波动就需要统计。

本题还需要考虑以下三种情况:

  • 情况一:上下坡中有平坡
  • 情况二:数组首尾两端
  • 情况三:单调坡中有平坡
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值,考虑到情况二
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) //等号是考虑到情况一
             {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff,考虑到情况三
            }
        }
        return result;
    }
};

leetcode 53. 最大子序和

题目链接:最大子序和
局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小
全局最优:选取最大“连续和”

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int res = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > res) { //取区间累计的最大值(相当于不断确定最大子序终止位置)
                res = count;
            }
            if (count <= 0) count = 0; //相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return res;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值