leetcode 84. 柱状图中最大的矩形
题目链接:柱状图中最大的矩形
双指针解法:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
vector<int> minLeftIndex(heights.size());
vector<int> minRightIndex(heights.size());
int size = heights.size();
// 记录每个柱子 左边第一个小于该柱子的下标
minLeftIndex[0] = -1; // 注意这里初始化,防止下面while死循环
for (int i = 1; i < size; i++) {
int t = i - 1;
// 这里不是用if,而是不断向左寻找的过程
while (t >= 0 && heights[t] >= heights[i]) t = minLeftIndex[t];
minLeftIndex[i] = t;
}
// 记录每个柱子 右边第一个小于该柱子的下标
minRightIndex[size - 1] = size; // 注意这里初始化,防止下面while死循环
for (int i = size - 2; i >= 0; i--) {
int t = i + 1;
// 这里不是用if,而是不断向右寻找的过程
while (t < size && heights[t] >= heights[i]) t = minRightIndex[t];
minRightIndex[i] = t;
}
// 求和
int result = 0;
for (int i = 0; i < size; i++) {
int sum = heights[i] * (minRightIndex[i] - minLeftIndex[i] - 1);
result = max(sum, result);
}
return result;
}
};
单调栈解法:
- 本题要找每个柱子左右两边第一个小于该柱子的柱子,所以从栈头(元素从栈头弹出)到栈底的顺序应该是从大到小的顺序
- 栈顶和栈顶的下一个元素以及要入栈的三个元素组成了要求的最大面积的高度和宽度
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int res = 0;
stack<int> st;
heights.insert(heights.begin(), 0); //数组头部加入元素0,防止在数组为完全升序时没有结果输出
heights.push_back(0); // 数组尾部加入元素0,防止在数组为完全降序时没有结果输出
st.push(0);
// 第一个元素已经入栈,从下标1开始
for (int i = 1; i < heights.size(); i++) {
if (heights[i] > heights[st.top()]) { // 情况一
st.push(i);
} else if (heights[i] == heights[st.top()]) { // 情况二
st.pop(); // 这个可以加,可以不加,效果一样,思路不同
st.push(i);
} else { // 情况三
while (!st.empty() && heights[i] < heights[st.top()]) { // 注意是while
int mid = st.top();
st.pop();
if (!st.empty()) {
int left = st.top();
int right = i;
int w = right - left - 1;
int h = heights[mid];
res = max(res, w * h);
}
}
st.push(i);
}
}
return res;
}
};
代码简化为:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
stack<int> st;
heights.insert(heights.begin(), 0); //数组头部加入元素0
heights.push_back(0); //数组尾部加入元素0
st.push(0);
int res = 0;
for (int i = 1; i < heights.size(); i++) {
while (heights[i] < heights[st.top()]) {
int mid = st.top();
st.pop();
int w = i - st.top() - 1;
int h = heights[mid];
res = max(res, w * h);
}
st.push(i);
}
return res;
}
};