ABSTRACT
最近,卷积网络在为推荐的顺序用户交互建模方面显示出巨大的前景。关键是,这样的网络依赖固定的卷积核来捕获顺序行为。在这篇论文中,我们认为,在基于会话的设置中,项目到项目转换的所有动态可能在训练时间都是观察不到的。因此,我们提出了DynamicRec,它使用动态卷积来根据当前输入动态地计算卷积核。我们通过实验表明,在基于会话的环境下,该方法在真实数据集上的性能明显优于现有的卷积模型。
日常用户与不同电子商务平台上的各种项目交互,执行一系列动态操作。这些平台通常使用会话密钥在短时间内记录这些顺序交互。在这种情况下,推荐系统的目标是从短序列中捕获顺序动态,并预测用户下一步最有可能与之交互的项目。随着递归神经网络(RNNs)和卷积网络(CNNs)的出现,人们对将它们结合到这个基于会话的推荐中越来越感兴趣。这些模型的优点在于,它们可以通过隐藏状态(RNN)或通过在固定数量的过去动作(CNN)上卷积来总结先前的动作,从而捕获顺序动态。例如,GRU4Rec使用门控循环单元(GRU)对基于会话的推荐的点击序列进行建模[6]。在每一步中,RNN将上一步的状态和当前动作作为其输入。这些依赖关系使得RNN比CNN更复杂,效率更低,尽管已经提出了诸如“会话并行”之类的技术来提高效率[6]
最近,社区中有一个强有力的努力来应用CNN来解决这个问题。卷积运算的优点很简单:它们需要较少的参数,同时允许并行计算,因此能够提供几个数量级的加速比。事实证明,在行业级别部署该模型时,这一点非常有用