- 博客(3)
- 收藏
- 关注
原创 机器学习-贝叶斯估计
贝叶斯估计假设我们有样本D={~},并且已知x~其中未知,已知,又已知~.,其中表示在给定的样本条件下来估计x的概率密度。我们需要求和.首先,其中,其中
2020-12-17 11:30:17 449
原创 机器学习-最大似然估计-多项式密度
多项式密度假设我们有样本X={~},某一个样本的取值可能性为...之一,即:,我们有限制条件该公式可以类比伯努利密度中只有两种结果的情况:,两种情况的也可以写成:根据最大似然估计,要使得每个样本都最大可能出现则有:根据拉格朗日数乘法,令:....解以上方程:........
2020-12-15 23:29:28 429 1
原创 机器学习-最大似然估计
最大似然估计假设我们有一组独立同分布的样本X={~},是从某个已知的概率分布簇中取出的数据,其中是未知的参数,我们要通过给定的样本X来估计的取值,我们的任务就是找到一个合适的,使得~这些样本出现的概率最大,每一个样本出现的概率最大,那么就要使达到最大,为了便于计算对该式求对数得,表示在已经知道X样本的情况下估计的值。一般对求偏导,令偏导为0,求出使得改式最大的值。伯努利密度伯努利分布两种结果要么发生要么不发生,如下:当x=1时p(x)=p,当x=0时p(x)=1-p,假设我们有样本X={
2020-12-14 22:57:20 327 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人