机器学习-最大似然估计-多项式密度

多项式密度

假设我们有样本X={X^{1}~X^{N}},某一个样本X^{t}的取值可能性为X_{1}^{t}... X_{K}^{t}之一,即:p(X^{t})=\prod_{i=1}^{K}p(i)^{X_{i}^{t}},

我们有限制条件\prod_{i=1}^{K}p(i)=1

该公式可以类比伯努利密度中只有两种结果的情况:p(X^{^{t}})=p(1)^{X_{1}^{t}}p(2)^{X_{2}^{t}},两种情况的也可以写成:

p(X^{})=p^{X}(1-p)^{1-X}

根据最大似然估计,要使得每个样本都最大可能出现则有:

l=log\prod_{t=1}^{N}\prod_{i=1}^{K}p(i)^{X_{i}^{t}}=\sum_{t=1}^{N}\sum_{i=1}^{K}X_{i}^{t}logp(i)=X_{1}^{1}logp(1)+X_{2}^{1}logp(2)+...+X_{K}^{1}logp(K)+X_{1}^{2}logp(1)+X_{2}^{2}logp(2)+...+X_{K}^{2}logp(K)+............+X_{1}^{N}+X_{2}^{N}+...+X_{K}^{N}

根据拉格朗日数乘法,令:

E=l+m(\prod_{i=1}^{K}p(i)-1)

\frac{\partial E}{\partial p(1)}=\frac{X_{1}^{1}}{p(1)}+\frac{X_{1}^{2}}{p(1)}+...+\frac{X_{1}^{N}}{p(1)}+m=0

\frac{\partial E}{\partial p(2)}=\frac{X_{1}^{2}}{p(2)}+\frac{X_{2}^{2}}{p(2)}+...+\frac{X_{2}^{N}}{p(2)}+m=0

....

\frac{\partial E}{\partial p(K)}=\frac{X_{K}^{1}}{p(K)}+\frac{X_{K}^{2}}{p(K)}+...+\frac{X_{K}^{N}}{p(K)}+m=0

\frac{\partial E}{\partial m}=\prod_{i=1}^{K}p(i)-1=0

解以上方程:

p(1)=-\frac{1}{m}\sum_{t=1}^{N}X_{1}^{t}

p(2)=-\frac{1}{m}\sum_{t=1}^{N}X_{2}^{t}

.....

p(K)=-\frac{1}{m}\sum_{t=1}^{N}X_{K}^{t}

\sum_{i=1}^{K}p(i)=-\frac{1}{m}(\sum_{t=1}^{N}X_{1}^{t}+\sum_{t=1}^{N}X_{2}^{t}+...+\sum_{t=1}^{N}X_{K}^{t})=1

m=-(\sum_{t=1}^{N}X_{1}^{t}+\sum_{t=1}^{N}X_{2}^{t}+...+\sum_{t=1}^{N}X_{K}^{t})=N,因为每个样本的所有可能之和为1,则N个样本所有可能取值之和为N,

解得:

\hat{p(i)}=\frac{1}{N}\sum_{t=1}^{N}X_{i}^{t}

 

 

 

 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值