文献阅读《Squeezing Backbone Feature Distributions to the Max for Efficient Few-Shot Learning》

文章简介

研究原因:使用少量标记样本导致的不确定性。

研究基础:前人使用预训练特征提取器实现在先前解决的任务上获取知识。

研究方法:

     1基于传输的方法;处理特征向量,将其接近高斯分布,提高精度。

     2优化式启发算法:训练期间使用未标记的测试样本进行直推式的小样本学习

背景问题:

背景:深度学习广泛应用于图像分类和目标检测等视觉任务,但需非常大的且质量较高的数据集进行训练。

面临困难:获取或注释数据的成本高,无法满足数据集要求。

解决前景:小样本学习(使用很少的标记示例进行学习)

目前存在的方法:

a)“归纳式小样本”:在训练期间,仅几个带标签样本可用,并且独立地对每个输入的测试进行预测。

b)“直推式小样本学习”:对一批(未标记的)测试输入进行预测,允许考虑其联合分布。

本文方法:

1特征预处理方法:可以在小样本传输设置中提高准确性。

2、直推式学习中,提出一种基于传输的优化算法,获得更好的性能。

本文模型结构:

            通过骨干网络提取特征,采用PEME进行特征预处理,再进行直推式学习预测。

 小样本学习现状:

本文工作流程图:

 归纳式和直推式学习介绍

Inductive learning:从训练集中归纳出一定的规则(模型),把该规则应用到测试数据上得到结果。

Transductive learning直接从训练数据和测试数据中直推出测试的结果,允许测试样本参与模型的构建。

 实验方法定义

 参数含义:

  • 新数据集中的类数n称为n-way)
  • 每个类的标记样本数(称为 s-shot)
  • 每类未标记样本的数量q

骨干网络

 

 特征预处理

采用不同主干网络、调整训练顺序

 PEME结构介绍

BMS结构介绍 (Boosted Min-size Sinkhorn)

       定义一个权重矩阵𝑊它有𝑛列(即每个类一列)和𝑑行(即每个特征向量维度一行),对于𝑊W中的列𝑗我们将其表示为类𝑗j的权重参数w_{j}\epsilon \mathbb{R}^{d},通过下面方程计算:

       𝑊包含了每个类支持集中特征向量的平均值,然后对每个列进行L_{2}归一化处理,使𝑗,||W^{_{j}}||_{2}=1

 

BMS算法

BMS和BMS*区别

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值