Spark Spark性能优化:RDD方法优化

对于RDD中某些函数使用注意

(1)能不使用groupByKey函数就不使用,除非不得已

redcueByKey(combiner) = groupBy+ map(变量值相加)
redcueByKey可以先进行本地聚合操作

(2)尽量使用XXPartition函数代替XX函数

  xx:map/foreach/zip
  def foreach(f: T => Unit): Unit
  f:针对RDD中每个元素进行的操作处理的
  def foreachPartition(f: Iterator[T] => Unit): Unit
  f:针对RDD中每个分区的元素进行操作处理的
  比如RDD中2个分区,100条数据,现将数据报道MYSQL表中
    foreach
    item ->mysql
    connection ->创建100次
    foreachPartition
  对每个分区中数据
  只要获取2个连接即可

(3)适当的降低或者增加RDD分区数目

  RDD的分区对应一个Task处理数据
  def repartition(numPartitions: Int) -产生shuffle
  def coalesce(numPartitions: Int, shuffle: Boolean = false)
  一开始的时候,数据量比较多,可以加到RDD分分区数,增加并行度(在集群资源充足的情况下)
  当数据预处理之后(尤其过滤清洗之后)。RDD中数据量减少了很多,此时可以考虑减少分区的数目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值