1.题目描述
请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都是O(1)。
若队列为空,pop_front 和 max_value 需要返回 -1
示例1:
输入:
["MaxQueue","push_back","push_back","max_value","pop_front","max_value"]
[[],[1],[2],[],[],[]]
输出: [null,null,null,2,1,2]
示例2:
输入: ["MaxQueue","pop_front","max_value"] [[],[],[]] 输出: [null,-1,-1]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/dui-lie-de-zui-da-zhi-lcof
2.思路
对于插入方法和删除方法可以直接用常见的队列来实现,但是对于查找最大值方法,显然没办法用O(1)的时间复杂度完成,因此,可以使用单调递减的双端队列来实现查找最大值方法。
那么如何高效实现一个始终递减的队列呢?我们只需要在插入每一个元素 value 时,从队列尾部依次取出比当前元素 value 小的元素,直到遇到一个比当前元素大的元素 value' 即可。
- 上面的过程保证了只要在元素 value 被插入之前队列递减,那么在 value 被插入之后队列依然递减。
- 而队列的初始状态(空队列)符合单调递减的定义。
- 由数学归纳法可知队列将会始终保持单调递减。
综上所述,本题使用两个队列来解答,一个常规队列和一个单调双端队列。
常规队列主要实现删除方法,单调双端队列主要实现查找最大值方法。
3.解答
class MaxQueue {
//单调的双端队列
Queue<Integer> q; //存储正常的队列
Deque<Integer> d; //存储单调队列
public MaxQueue() {
q = new LinkedList<>();
d = new LinkedList<>();
}
//遍历求最大值
public int max_value() {
if(d.isEmpty()){
return -1;
}
return d.peekFirst();
}
//末端插入
public void push_back(int value) {
//维持单调递减
while(!d.isEmpty() && d.peekLast() < value){
d.pollLast();
}
//同时插入两个队列
d.offerLast(value);
q.offer(value);
}
//查找第一个
public int pop_front() {
if (q.isEmpty()) {
return -1;
}
int ans = q.poll();
//同时从两个队列中删除
if(ans == d.peekFirst()){
d.pollFirst();
}
return ans;
}
}
- 时间复杂度:O(1),删除操作于求最大值操作显然只需要 O(1) 的时间;而插入操作虽然看起来有循环,做一个插入操作时最多可能会有 n 次出队操作。但要注意,由于每个数字只会出队一次,因此对于所有的 n 个数字的插入过程,对应的所有出队操作也不会大于 n 次。因此将出队的时间均摊到每个插入操作上,时间复杂度为 O(1)。
- 空间复杂度:O(n),需要用队列存储所有插入的元素。