剑指 Offer 59题:队列的最大值

1.题目描述

请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都是O(1)。

若队列为空,pop_front 和 max_value 需要返回 -1

示例1:

输入: 
["MaxQueue","push_back","push_back","max_value","pop_front","max_value"]
[[],[1],[2],[],[],[]]
输出: [null,null,null,2,1,2]

示例2:

输入: 
["MaxQueue","pop_front","max_value"]
[[],[],[]]
输出: [null,-1,-1]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/dui-lie-de-zui-da-zhi-lcof

2.思路

 对于插入方法和删除方法可以直接用常见的队列来实现,但是对于查找最大值方法,显然没办法用O(1)的时间复杂度完成,因此,可以使用单调递减的双端队列来实现查找最大值方法。

那么如何高效实现一个始终递减的队列呢?我们只需要在插入每一个元素 value 时,从队列尾部依次取出比当前元素 value 小的元素,直到遇到一个比当前元素大的元素 value' 即可。

  • 上面的过程保证了只要在元素 value 被插入之前队列递减,那么在 value 被插入之后队列依然递减。
  • 而队列的初始状态(空队列)符合单调递减的定义。
  • 由数学归纳法可知队列将会始终保持单调递减。

综上所述,本题使用两个队列来解答,一个常规队列和一个单调双端队列。 

常规队列主要实现删除方法,单调双端队列主要实现查找最大值方法。

3.解答 

class MaxQueue {
    //单调的双端队列

    Queue<Integer> q; //存储正常的队列
    Deque<Integer> d; //存储单调队列

    public MaxQueue() {
        q = new LinkedList<>();
        d = new LinkedList<>();
    }
    
    //遍历求最大值
    public int max_value() {
        if(d.isEmpty()){
            return -1;
        }
        return d.peekFirst();
    }
    
    //末端插入
    public void push_back(int value) {
        //维持单调递减
        while(!d.isEmpty() && d.peekLast() < value){
            d.pollLast();
        }
        //同时插入两个队列
        d.offerLast(value);
        q.offer(value);
    }
    
    //查找第一个
    public int pop_front() {
        if (q.isEmpty()) {
            return -1;
        }
        int ans = q.poll();
        //同时从两个队列中删除
        if(ans == d.peekFirst()){
            d.pollFirst();
        }
        return ans;
    }
}
  • 时间复杂度:O(1),删除操作于求最大值操作显然只需要 O(1) 的时间;而插入操作虽然看起来有循环,做一个插入操作时最多可能会有 n 次出队操作。但要注意,由于每个数字只会出队一次,因此对于所有的 n 个数字的插入过程,对应的所有出队操作也不会大于 n 次。因此将出队的时间均摊到每个插入操作上,时间复杂度为 O(1)。
  • 空间复杂度:O(n),需要用队列存储所有插入的元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值