问题描述:
颠倒给定的 32 位无符号整数的二进制位。
示例 1:
输入: 00000010100101000001111010011100
输出: 00111001011110000010100101000000
解释: 输入的二进制串 00000010100101000001111010011100 表示无符号整数 43261596,
因此返回 964176192,其二进制表示形式为 00111001011110000010100101000000。
示例 2:
输入:11111111111111111111111111111101
输出:10111111111111111111111111111111
解释:输入的二进制串 11111111111111111111111111111101 表示无符号整数 4294967293,
因此返回 3221225471 其二进制表示形式为 10101111110010110010011101101001。
提示:
- 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
- 在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在上面的 示例 2 中,输入表示有符号整数
-3
,输出表示有符号整数-1073741825
。
进阶:
如果多次调用这个函数,你将如何优化你的算法?
解法一:
想不到,看了看力扣的大佬回答:
思路:此题只需要采用位运算,每次将原来的数字向左移动1位,就需要把该末尾加到我们的数字中去即可,此题需要注意的是一点要循环32次,不仅是有32位,最重要的不能判断到原来的数字为0就结束循环,这样就有可能的导致没有补足0所以要循环32次。
同时对于左移而言,末尾全部补上的是0,而对于右移而言左边补的是原本最高位的数字,比如一个32位的数字最高位(也就是符号位)为1就全部补上1,如果为0 就全部补上0.这个知识点也是面试常考的。
代码如下:
class Solution {
public:
uint32_t reverseBits(uint32_t n) {
uint32_t result = 0;
for(int i = 0 ; i < 32; i++){
result = result << 1;
result = result + (n&1);//此处一定要加括号,因为&的运算等级很低
n = n >> 1;
}
return result;
}
};
作者:vailing
链接:https://leetcode-cn.com/problems/reverse-bits/solution/zuo-you-yi-dong-by-vailing/
来源:力扣(LeetCode)