微软小冰首席科学家武威解读 EMNLP 论文:聊天机器人的深度学习模型
http://dy.163.com/v2/article/detail/E51C8IDP05118HA4.html
多模态、个性化交互成趋势
基于检索的方法的优点包括能找出很有趣、多样性很高的回复;大量借鉴了搜索引擎上的方法,可以直接采用搜索引擎上的方法(learning to rank)来进行评估。其缺点在于对话的质量完全取决与 index 的质量。
基于生成式的方法的优点包括支持端到端的学习;由于不受到 Index 的束缚,生成模型可以进行更多的变形,比如将风格、情感引入到生成式对话中,对生成式对话进行控制等。不过其缺陷也很明显:一是该方法不太好评估,现在的评估方法依赖于大量标注,但各自的标注不一,针对目前的生成式文章也无法判断谁提出的方法更好一些;二是相对于检索模型,它的多样性还是要差一些
清华大学 黄民烈
ECM(Emotional Chatting Machine:情绪化聊天机器人)、基于深度学习的情感对话模型中,团队首次将情感因素引入了基于深度学习的生成模型
https://www.tsinghua.edu.cn/publish/cs/4853/2017/20170925091438533892174/20170925091438533892174_.html
陈文亮 - 面向电商平台的自然语言处理相关技术研究
陈文亮分享了团队与阿里不同团队的合作项目,结合在电商平台业务需求中所产生的自然语言处理实际问题,并开展创新性前沿应用技术研究和开发,研究如何利用大规模多领域跨语言无标注语料资源,并提高自然语言处理任务的准确率和鲁棒性。基于依存句法树库构建和分析模型、面向单产品问答文本的情感分析方法研究、面向知识图谱构建的文本挖掘算法研究和面向神经机器翻译的干预技术研究等四个领域
赵东岩 - 基于知识图谱的文本语义理解及其智能应用
北京大学计算机研究所的赵东岩首先从类人智能研究动态入手,介绍了文本语义理解技术的相关背景,并从语义挖掘、语义理解、对话系统三个研究方向介绍了相关技术研究。
在语义挖掘领域,赵东岩团队已经构建了超过 1300 万条 RDF 知识条目、80 万实体的中文知识图谱,并支持动态构建、置信度评价、自然语言问答等。
在语义理解领域,团队构建了基于图结构的大规模 RDF 语义网络存储与查询系统,搜狗知立方 10 亿条知识图谱实测的平均查询时间为 400ms。
在对话系统领域,比较成熟的检索式对话技术通过从大量对话数据库中搜索候选回答,并将用户问题进行结构化,通过深度神经网络技术对候选回答进行排序,得到最优回答。
此外在语义引擎、对话机器人等方面,语义理解也有着多种技术应用,如理财顾问机器人、法律助理机器人等。
邱锡鹏-自然语言处理中的多任务学习
复旦大学的邱锡鹏首先回顾了 NLP 的发展历程,并引出深度学习在自然语言处理中的「尴尬」地位主要有两个方面。一是 NLP 任务中的神经网络并不深,多数情况下,一层 LSTM 加 attention 机制就足够解决问题;二是深度学习面临数据标注需求量大与代价高之间的矛盾。邱锡鹏指出在数据量小的情况下,可以采用多任务学习来联合训练多个不同任务,通过找到共性以相互提高,深度学习也为多任务学习在自然语言处理中的应用提供了条件,具体的结合形式包括硬共享模式,软共享模式,以及共享-私有模式等。不过邱锡鹏也指出,在多领域任务、多级任务及多语言任务上,多任务学习仍然面临不同层面的挑战。
蒋静- Match-LSTM 模型在自然语言推理和机器阅读理解上的应用
新加坡管理大学的蒋静围绕团队提出的 Match-LSTM 模型分享了这一算法在自然语言推理和机器阅读理解上的应用。该模型改进了 Rocktaschel et al. (2015) 提出的基于 word-by-word attention 的模型,在解决文本蕴含任务中取得提升,在 SQuAD 数据集中取得了最好效果。通过给定前提 (premise) 去判断相应的假说 (hypothesis) 是否正确,是则判断为蕴含 (entailment),否则为矛盾 (contradiction)。
陈博兴 - 机器翻译在跨境电商领域的应用与研究
阿里翻译平台收集和构建了大量的电商领域的平行语料和知识库,并结合不同业务场景有的放矢,设计了基于规则的翻译模块(Rule Based Machine Translation,RBMT),基于短语的统计机器翻译模型(Statistical Machine Translation,SMT)和基于神经网络的机器翻译模型(Neural Machine Translation,NMT)等。最后陈博兴总结道,翻译的准确性、灵活性、可用性及稳定性一直都是机器翻译系统的重要标准。虽然目前机器翻译的效果并不算尽善尽美,但它在一些场景中能提供巨大的商业价值。
李林琳 - 阿里巴巴自然语言处理基础技术及其应用
刘晓钟 - 文本挖掘中的用户变量
对于一个拥有海量多维数据的企业,阿里 MIT 在文本挖掘上也做出了不少尝试。刘晓钟在分享中介绍了团队在智能司法、舆论分析、文本生成、反垃圾、个性化推荐、事件挖掘等多领域的探索及实践应用。通过用户行为数据更好地理解用户,抽取重要的用户变量,代入文本挖掘的算法,进而提升算法准确度