情感分析
k+
这个作者很懒,什么都没留下…
展开
-
中文文本情感分析:基于机器学习方法的思路
https://blog.csdn.net/u013737526/article/details/73201572转载 2019-03-19 14:36:51 · 2157 阅读 · 0 评论 -
NLP中文分词工具比较
NLP中文分词工具比较四款python中中文分词的尝试。尝试的有:jieba、SnowNLP(MIT)、pynlpir(大数据搜索挖掘实验室(北京市海量语言信息处理与云计算应用工程技术研究中心))、thulac(清华大学自然语言处理与社会人文计算实验室)https://blog.csdn.net/gdh756462786/article/details/79102642...原创 2019-05-06 16:04:16 · 665 阅读 · 0 评论 -
情感分析
**基于词典的情感分析大致步骤如下**分解文章段落分解段落中的句子分解句子中的词汇搜索情感词并标注和计数搜索情感词前的程度词,根据程度大小,赋予不同权值搜索情感词前的否定词,赋予反转权值(-1)计算句子的情感得分计算段落的情感得分计算文章的情感得分基于机器学习的情感分析文本结构化文本向量化词条权值特征提取分类算法选择训练模型和评价预训练方法1)wor...原创 2019-05-05 17:03:01 · 448 阅读 · 0 评论 -
情感分析资源大全(语料、词典、词嵌入、代码)
https://blog.csdn.net/qq280929090/article/details/708380251 语料库1.1 谭松波-酒店评论语料-UTF-8,10000条 现在网上大部分谭松波老师的评论语料资源的编码方式都是gb2312,本资源除了原始编码格式,还具有UTF-8编码格式。 本资源还包含将所有语料分成pos.txt和neg.txt两个文件,每个文件中的一行代表原始数...原创 2019-05-05 15:52:55 · 5042 阅读 · 1 评论 -
2018 NLP
自然语言处理概述(前沿、数据集、下游任务)https://blog.csdn.net/xuan100e/article/details/89544956ELMo(Embeddings from Language Models)是一种动态的,语境化的词向量表示方法,可以根据上下文语境来生成相应词的向量表示ELMo通过深度双向语言模型(biLM)进行训练,主要解决了两个问题:(1) 学习词汇用...原创 2019-05-03 09:28:11 · 144 阅读 · 0 评论 -
基于深度学习的自然语言处理
CBOW 表示可以通过求单词表示向量和或者通过将一个单词词袋向量乘以一个每一行对应于一个稠密单词表示的矩阵(这样的矩阵也叫作嵌入矩阵( embedd i ngmatricy ))来得到。网络中每行神经元的值可以看作是一个向量全连接层可以看作是从四维到六维的线性变换。全连接层实现了一个向量与矩阵的乘法, h=xW由线性变换产生的向量称为层。最外层的线性变换产生输出层,其他线性变换产生隐...原创 2019-04-09 20:00:35 · 1827 阅读 · 0 评论 -
python 自然语言处理实战
Jibea词性标注北大词性标注集宾州词性标注集关键词提取算法 TF/IDFTextBank算法LSA(SVD奇异值分解)LDA(贝叶斯)原创 2019-04-15 18:46:28 · 2240 阅读 · 0 评论 -
attention RNN LSTM Gru gate dropout 隐马尔可夫链
attention注意力机制即 Attention mechanism在序列学习任务上具有巨大的提升作用,在编解码器框架内,通过在编码段加入Attention模型,对源数据序列进行数据加权变换,或者在解码端引入Attention 模型,对目标数据进行加权变化,可以有效提高序列对序列的自然方式下的系统表现。原文:https://blog.csdn.net/guohao_zhang/article...原创 2019-04-07 22:14:37 · 1378 阅读 · 0 评论 -
情感分析 方法比较
CDLS 传统的基于词典和规律集的微博情感分析方法 根据微博特性,定义了不同语言层次上的规则, 结合情感词典对微博文本进行了从词典到句子的分析法LR 将微博语句使用TF-IDF进行表示, 然后使用创痛的回归分析方法进行语句的情感分析 对于局的向量表示不考虑语句的情感信息SVM 将微博语句使用TF-IDF进行表示, SVM 分类W2V+CNN word2vec训练词向量 ...原创 2019-03-26 21:56:39 · 1754 阅读 · 0 评论 -
情感分析 综述
情感分析或观点挖掘是对人们对产品、服务、组织、个人、问题、事件、话题及其属性的观点、情感、情绪、评价和态度的计算研究。该领域的开始和快速发展与社交媒体的发展相一致,如评论、论坛、博客、微博、推特和社交网络,因为这是人类历史上第一次拥有如此海量的以数字形式记录的观点数据。早在 2000 年,情感分析就成为 NLP 中最活跃的研究领域之一。它在数据挖掘、Web 挖掘、文本挖掘和信息检索方面得到了广泛的...原创 2019-05-13 16:14:55 · 7331 阅读 · 1 评论