情感分析

**

基于词典的情感分析大致步骤如下

**

分解文章段落

分解段落中的句子

分解句子中的词汇

搜索情感词并标注和计数

搜索情感词前的程度词,根据程度大小,赋予不同权值

搜索情感词前的否定词,赋予反转权值(-1)

计算句子的情感得分

计算段落的情感得分

计算文章的情感得分


基于机器学习的情感分析


  1. 文本结构化
    文本向量化
    词条权值
    特征提取
  2. 分类算法选择
  3. 训练模型和评价

预训练方法
1)word2vec
2)ULMFit
3)ELMo
4)Open AI Transformer

中文分词

  1. 规则分词
    正向最大匹配
    逆向最大匹配
    双向最大匹配
  2. 统计分词
  3. 混合分词
  4. 中文分词工具 Jieba

关键词提取算法

  1. PageRank
    求解网页的重要性就是求解有向图中节点的重要性,或者说节点的权重
  2. TextRank
    TextRank算法构造了一个无向图
  3. TF-IDF
  4. 基于语义的中文文本关键词提取(SKE)算法

句法分析

  1. 基于PCFG的句法分析
  2. 基于最大最大网隔马尔可夫网络
  3. 基于CRF句法分析
  4. 基于移进规约句法分析

文本向量化

  1. word2vec
  2. C&w
  3. CBOW Skip-gram
  4. doc2vec

自然语言语义相似度计算方法

  1. 基于向量空间模型的计算方法

  2. 基于向量空间模型的计算方法

  3. 基于语义理解的计算方法

词向量技术

词向量的获取方式
基于共现矩阵的方式
SVD(奇异值分解)

  1. ELMo–动态词向量
  2. 基于GloVe词向量的“技术
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值