[HPC入门] 高性能计算 (HPC) 是什么?哪些业务场景需要HPC?

本文详细阐述了高性能计算(HPC)的概念、工作原理、重要性、优势以及在云计算、AI和大数据融合中的角色。讨论了HPC的部署模式、挑战和选择云环境的关键要素。文中还列举了多个HPC集群的实际案例,展示了HPC技术的发展现状和未来展望。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高性能计算 (HPC) 是指通过聚合计算能力来提供比传统计算机和服务器更强大的计算性能。高性能计算 (HPC) 或超级计算和日常计算一样,区别只在于它的计算能力更强大。它能够通过聚合结构,使用多台计算机和存储设备,以极高速度处理大量数据,帮助人们探索科学、工程及商业领域中的一些世界级的重大难题。

如今,HPC 用于解决复杂的性能密集型问题,而且越来越多的企业开始将 HPC 负载迁移至云端。云端 HPC 正在改变产品开发和研究的经济性,因为它需要更少的原型,有助于加速测试,缩短上市时间。

图片

什么是高性能计算/ HPC

High Performance Computing, HPC是一种技术,它使用并行工作的强大处理器集群,处理海量多维数据集(大数据),并以极高的速度解决复杂问题。不用把HPC理解成一个系统或者超级计算机,就理解成并行计算、集群计算以及网格分布式计算技术就好。 HPC 非常适合需要高性能数据分析的各种应用程序,例如高频交易、仿真模拟、计算机辅助设计、机器学习和深度学习等。

高性能/HPC到底是指什么

【简单说】一般认为HPC 系统的运行速度通常要比商用台式机、笔记本电脑或服务器系统快一百万倍以上。

当我们谈论高性能计算时,性能一般是指计算系统及时处理大量数据或进行复杂计算的能力。 HPC 系统通常设计用于处理极大的工作负载并高速执行计算,这使非常适合科学研究、金融建模和其他计算密集型任务等应用程序。在衡量 HPC 系统的性能时,通常会考虑几个因素,包括:

  • 处理器性能:指系统中中央处理器(CPU)或图形处理器(GPU)的处理能力。 HPC 系统通常使用多个并行工作的处理器来提高处理能力。

  • 内存性能:这是指系统内存(RAM)的速度和容量。 HPC 系统通常需要大量内存来支持复杂的计算和大型数据集。

  • I/O 性能:这是指数据可以从系统的存储设备输入和输出的速度。 HPC 系统通常需要高速存储设备来支持大型数据集的快速处理。

  • 网络性能:这是指连接 HPC 系统各个组件的网络的速度和容量。 高速网络在 HPC 系统中对于支持多个处理器和存储设备之间的通信至关重要。

  • 小结一下,在 HPC 中性能是一个多方面的概念,涵盖了很多因素,包括处理器、内存、I/O 和网络性能。HPC 系统的目标是优化所有这些因素,为需要执行的特定任务或应用程序提供最高级别的性能。

HPC 的工作原理是什么?

在实际应用中,有一些负载(例如 DNA 测序)对于任何一台计算机来说都过于庞大。对此,HPC 或超级计算环境可以使多个节点(计算机)以集群(互联组)的形式协同作业,在短时间内执行海量计算,从容应对这些规模庞大而又极其复杂的负载挑战。此外,由于支持在云端自动创建和删除集群,HPC 还能有效降低负载成本。

HPC 支持多种类型的负载,其中最常见的两种负载是并行负载和紧密耦合负载。

并行负载

并行负载指被细分为多个小型、简单、独立任务的计算问题,这些任务可以同时运行,通常相互之间几乎没有通信。例如,一家企业可能向某节点集群中的各个处理器核心提交了 1 亿条信用卡记录。其中,处理一条信用卡记录即是一项小任务,当 1 亿条记录分布在整个集群上时,1 亿个小任务就能以惊人的速度同时(并行)执行。并行负载的常见使用场景包括风险模拟、分子建模、上下文搜索和物流模拟。

紧密耦合负载

紧密耦合负载通常占用较多的共享资源,并分解为相互之间持续通信的小任务。换言之,集群中的各个节点在执行处理时会相互通信。紧密耦合负载的常见使用场景包括计算流体动力学、天气预报建模、材料模拟、汽车碰撞仿真、地理空间模拟和交通管理。

HPC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值