不懂Embedding,何以懂AI?
本文将从Text Embedding工作原理、Image Embedding工作原理、Vedio Embedding工作原理三个方面,带您一文搞懂Embedding工作原理。
Embedding可视化
一、Text Embedding工作原理
文本向量化(Text Embedding):将文本数据(词、句子、文档)表示成向量的方法。
词向量化将词转为二进制或高维实数向量,句子和文档向量化则将句子或文档转为数值向量,通过平均、神经网络或主题模型实现。
-
词向量化:将单个词转换为数值向量。
-
独热编码(One-Hot Encoding):为每个词分配一个唯一的二进制向量,其中只有一个位置是1,其余位置是0。
-
词嵌入(Word Embeddings):如Word2Vec, GloVe, FastText等,将每个词映射到一个高维实数向量,这些向量在语义上是相关的。
-
词向量化
-
句子向量化:将整个句子转换为一个数值向量。
-
简单平均/加权平均:对句子中的词向量进行平均或根据词频进行加权平均。
-
递归神经网络(RNN):通过递归地处理句子中的每个词来生成句子表示。
-
卷积神经网络(CNN):使用卷积层来捕捉句子中的局部特征,然后生成句子表示。
-
自注意力机制(如Transformer):如BERT模型,通过对句子中的每个词进行自注意力计算来生成句子表示。
-