【大模型开发】 一文搞懂Embedding工作原理

本文详细介绍了TextEmbedding(文本嵌入)、ImageEmbedding(图像嵌入)和VedioEmbedding(视频嵌入)的工作原理,涵盖了词向量化、句子和文档表示、CNN、自编码器等技术,展示了Embedding如何将离散信息转化为向量,以便于机器理解语义相似性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不懂Embedding,何以懂AI?

本文将从Text Embedding工作原理Image Embedding工作原理、Vedio Embedding工作原理三个方面,带您一文搞懂Embedding工作原理

图片

Embedding可视化

一、Text Embedding工作原理

文本向量化(Text Embedding)将文本数据(词、句子、文档)表示成向量的方法。

词向量化将词转为二进制或高维实数向量,句子和文档向量化则将句子或文档转为数值向量,通过平均、神经网络或主题模型实现。

  • 词向量化:将单个词转换为数值向量。
    • 独热编码(One-Hot Encoding):为每个词分配一个唯一的二进制向量,其中只有一个位置是1,其余位置是0。

    • 词嵌入(Word Embeddings):如Word2Vec, GloVe, FastText等,将每个词映射到一个高维实数向量,这些向量在语义上是相关的。

图片

词向量化

  • 句子向量化:将整个句子转换为一个数值向量。
    • 简单平均/加权平均:对句子中的词向量进行平均或根据词频进行加权平均。

    • 递归神经网络(RNN):通过递归地处理句子中的每个词来生成句子表示。

    • 卷积神经网络(CNN):使用卷积层来捕捉句子中的局部特征,然后生成句子表示。

    • 自注意力机制(如Transformer):如BERT模型,通过对句子中的每个词进行自注意力计算来生成句子表示。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值