泊松分布:
泊松分布是二项式分布的一个特殊表现形式,想了解泊松分布我们先看二项式分布:
其中n为进行试验的总次数,p为事件单次发生的概率,k为事件发生的次数,令期望,此时的
,当
∞时,
时,带入二项式分布函数,得到
因为∞所以
指数函数的性质可知:
因为∞,所以
,由等价无穷小的替代可知:
此时就得到了泊松分布的公式
Aloha通信:
Aloha:通过无线电广播来作为通信设施的通信协议。
传统的Aloha通信:随时随地,想发就发,有用户想发数据就发,这样就会造成多个用户之间发生数据冲突,可能会导致部分数据损坏。
时隙式Aloha通信: 使用了时钟来统一用户发送数据,先将连续的时间段,分割为多个时间片,每个时间片的长度一致,每次用户发送信息必须要等到下一个时间片才可以发送数据,相对于传统的Aloha通信,避免了数据发送的随意性,减少了数据冲突的可能性,提高了信道的利用率。
Aloha模型:
在时隙式Aloha通信中,共有三种状态分别为:发送成功、空闲、数据产生碰撞,三种状态相互之间独立,服从泊松分布:
k = 1时,代表成功,k = 0时,代表空闲
。
计算碰撞率、成功率、空闲率
成功率:
假设在T时间内出现 i 次成功(U),出现 j 次非成功(BI),对应的概率为:
则
代入数据,上式化简可得,假设时间片(步长)为1,则
同理可知:
所以成功率Su为:
碰撞率:
假设在T时间内出现 i 次碰撞(B),出现 j 次非碰撞(UI),对应的概率为:
代入数据化简可知
,
代入数据化简可知
,
碰撞率为:
空闲率:
假设在T时间内出现 i 次空闲(I),出现 j 次非空闲(UI),对应的概率为:
同理可得,在此不多做赘述了。
使用matlab计算之后更新。