Xiang神经网络总结(十五)

在这里插入图片描述
必要遮挡证明神经网络学习到了有用的信息。(更关注象脸)
在这里插入图片描述
我们之前反向传播的时候,计算的是结果关于权值的导数,这里计算结果关于Δx的导数。思考这里这样操作为什么成立?我们知道前向计算是权值×ΔX然后通过反向传播更新权值,更新完有些权值可能不重要设置成0了,那么结果关于Δx的导数可能就不存在了。

上图选择RGB三通道中导数最大的通道保留,我们可以通过这个反向可视化来确定神经网络学习性能如何,关注点是否正确。(实际上效果不是太好)。
在这里插入图片描述
一种反向可视化可应用的场景:图像分割,反向可视化可以理解为对于图片“边界”的确定。

Guided BP
在这里插入图片描述
自我理解:反向传播的梯度矩阵我们肯定更关心那些梯度较大的地方(信息强烈),对于正向来的梯度,那些负了的我们也是不怎么关心的。
在这里插入图片描述
在这里插入图片描述
还有其他方法可视化每个神经元在做什么吗?
Gradient Ascent(梯度上升)
假设人工合成的可视化卷积核图为 x,我们希望这张合成图 x 能够使其对应的神经元(卷积核)具有最高的激活值。所得到的这张合成图像就是该卷基层的卷积核“想要看到的”或者“正在寻找的纹理特征”。也就是说我们希望找到一张图像经过CNN网络,传播到指定的卷积核的时候,这张图片可以使得该卷积核的得分最高。

为了合成这一张图片,我们开始从一张带有随机噪声的图像开始,每个像素值随机选取一种颜色。

接下来,我们使用这张噪声图作为CNN网络的输入向前传播,然后取得其在网络中第 i 层 j 个卷积核的激活 a_ij(x),然后做一个反向传播计算 delta a_i(x)/delta x 的梯度,最后我们把该噪声图的卷积核梯度来更新噪声图。目标是希望通过改变每个像素的颜色值以增加对该卷积核的激活,这里就使用了梯度上升法:
在这里插入图片描述
这里的zero image随机颜色,卷积核规定了每个像素所占的比例,可以简单的理解为卷积核在画图,然后反向传播 激活delta a_i(x)/delta x 的梯度叠加到原图上。
在这里插入图片描述
正则项,不鼓励大的权值(损失值会变大)
在这里插入图片描述
其他一些正则手段,高斯平滑等
在这里插入图片描述
由梯度上升(加强)可以看出低层神经元更关注纹理信息,高层抽象出一定的语义信息。
在这里插入图片描述
一些约束使得图像更真实
在这里插入图片描述
愚弄神经网络:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
因为神经网络都是W×X X稍微向W方向偏移一些那么W就容易被激活。
在这里插入图片描述
DeepDream
在这里插入图片描述
将某一层的梯度叠加到原图,然后反复叠加计算
在这里插入图片描述
在这里插入图片描述

针对特征:
在这里插入图片描述
在这里插入图片描述后层的神经网络可能就不关心细节信息了。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值