自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 和本地大模型进行对话

在终端中跟大模型进行交互,这种方法有点不太方便。下次可以分享使用Open WebUI大模型交互客户端进行部署。当安ollama之后,我们可以通过访问如下链接来判断ollama是否安装成功。当我们运行大模型的时候,ollama会自动帮我们下载大模型到我们本地。考虑到机器的配置以及不同版本的内存要求,我这里选择默认参数的模型。当安装完成ollama之后,我们就可以在命令行中运行如下命令。本文会手把手教你如何部署本地大模型

2024-04-22 21:21:26 348

原创 昇思MindSpore技术公开课-ChatGLM2

ChatGLM2-6B 是开源中英双语对话模型ChatGLM-6B 的第二代版本,保留初代模型对话流畅、部署门槛较低等众多优秀特性GLM模型的自回归填空方法基于上下文预测下一个token的生成模型。

2024-01-19 21:46:00 937

原创 昇思MindSpore技术公开课-文本解码原理

重点讲解了自回归语言模型的工作原理和文本解码方式,包括确定性和不确定性解码、搜索和采样两种方法,以及使用beam和不用beam的区别。同时介绍了不同文本解码方式对生成文本效果的影响,并提到了复杂的文本解码方法,如congestive search和constrainedbeam search。这些内容对于理解大模型的生成效果和优化具有重要意义。

2024-01-19 21:10:07 824

原创 昇思MindSpore技术公开课-代码预训练

CodeSearchNet数据集codeGeeX本节课主要讲了代码预训练模型现有的代码预训练模型。人工智能代码生成工具是一种利用人工智能技术自动生成代码的工具,可以帮助程序员提高编程效率。这些工具使用预训练模型在大规模数据集上进行预训练,学习通用的语言表示,然后在特定任务上进行微调,以提高模型的性能。这种方法可以减少对标注数据的依赖,提高模型的泛化能力,同时也可以加速模型的训练过程。这些工具的简单性使编程变得更加容易,这就是它们的魅力所在。

2024-01-19 20:22:50 825

原创 昇思MindSpore技术公开课-GPT

GPT是“生成预训练变换器”(Generative Pre-trained Transformer)的缩写。GPT模型是一种由OpenAI公司开发的人工智能语言模型,它基于Transformer架构。它利用大规模文本数据进行预训练,掌握了丰富的语言知识和语境,能够完成多种自然语言处理任务。1. GPT模型的核心思想是在大规模语料库上进行预训练,使其具备对语言的理解和生成能力。它采用Transformer架构,该架构利用自注意力机制来处理输入序列,使得模型能够捕捉长距离依赖关系。

2024-01-19 19:12:42 900

原创 Python 修改 pip 源为国内源

2.永久换源。

2024-01-17 12:49:40 501

原创 BERT预训练模型

例如,使用Mindspore的Model类和相关的方法,实现一个train_and_eval函数,用于执行训练和评估过程。在训练脚本中,可以使用Mindspore的context模块和相关的函数,设置数据并行的模式和设备数量。在自然语言处理(NLP)领域,预训练模型是一种利用大规模无标注文本数据,通过无监督学习的方式,学习语言的通用知识和表示的方法。例如,下载中文情感分析数据集,并将其划分为训练集、验证集和测试集,然后使用BERT的分词器对其进行分词,并转换为BERT的输入格式。NLP中的预训练模型。

2023-12-17 19:46:31 466

原创 昇思MindSpore技术公开课-Transformer

学习了Transformer模型的基本原理和实现过程包括注意力机制、自注意力机制、多头注意力机制,Transformer模型的基本概念和结构等内容。Transformer模型由Encoder和Decoder组成。通过Encoder将输入句子提取特征,通过Decoder预测下一个单词。为了处理不确定性语言序列需要加入位置编码来区分不同位置的信息。位置编码通过在Word Embedding矩阵中添加位置信息来实现通过索引和矩阵运算来生成不同的位置编码保证每个位置上的数值不同。

2023-12-13 18:51:08 1507

原创 Pytorch安装及配置

本文主要讲解pytorch的安装以及在pycharm中配置环境。pytorch分为GPU版本和CPU版本使用PyTorch GPU版本有几个前提条件(本文并没有讲解,如有需要,请自行查找(主要是懒得写了)):1. **拥有NVIDIA显卡**:PyTorch GPU版本需要NVIDIA显卡以利用CUDA加速。确保你的电脑中有NVIDIA的GPU设备。2. **安装NVIDIA驱动**:为了使用GPU,需安装最新的NVIDIA显卡驱动程序,确保驱动版本与PyTorch所需的CUDA版本兼容。

2023-11-06 10:49:07 659

原创 AIGC与AidLux互联应用——AidLux端AIGC测评

AI生成内容(AIGC,人工智能生成内容)是一种新型的内容创作方式,它继承了专业生产内容(PGC,Professional-generated Content)和用户生成内容(UGC,User-generated Content)的优点,并充分发挥技术优势,打造了全新的数字内容生成与交互形态。通过训练模型和大量数据的学习,AIGC可以根据输入的条件或指导,生成与之相关的内容。此项目涉及到利用Stable Diffudion模型进行推理实现图片——>图片,文本——>图片两点,对硬件设备要求较高。

2023-06-05 20:15:06 261

原创 图像标注工具labelImg安装教程及使用方法

注意选完图片文件夹之后应该设置标注文件保存的目录(Change Save Dir)以记事本打开,内容如下,有许多信息(格式,其最终保存为XML文件。输入目标的标签名称,点击。在图片区域按W键进行框选。这里是用的PASCAL。,最后点击左边菜单栏的。即可获得一个xml文件。首先选择左侧菜单栏的。

2023-05-24 19:13:51 2200 2

原创 利用AidLux实现电力目标检测与实时锁定

通过结合YOLOv8目标测试和SORT(Simple Online and Realtime Tracking)算法,可以对电力目标进行检测和跟踪,并为其赋予唯一的ID,现实目标的锁定功能。通过实时锁定,可以赢得取消设备的准确位置信息,帮助运维人员或监控系统快速了解设备的运行状况,及时出现故障或异常情况。这种方法可以在实时视频中实现电力目标标志的锁定,以方便快速地了解目标标志的位置和状态。在代码中,YOLOv8用于实时目标检测,检测出电力目标的位置和边界框信息。具体实际方法可以参考提供的代码,如下。

2023-05-06 22:28:43 278 1

原创 基于AidLux实现热成像电力巡检

输电线路巡检主要分为线路本体、附属设施、通道及电力保护区三大类。其中线路线路本体巡检内容包括绝缘子、金具以及导、地线等。特别的,绝缘子,顾名思义,是隔离导线与塔体,起绝缘作用。输电线路运行过程中,由于内在或外在的原因,导致绝缘子串的温度异常,甚至导致低零值、零值等问题。提示:什么是零值和低零值?绝缘子的电阻值应该达到相当的数量级才能保证绝缘作用。当绝缘子的电阻变得很小,就会出现低零值现象,当绝缘子电阻趋近于0时,就出现了零值问题。绝缘子出现低零值和零值,就基本丧失了绝缘作用。

2023-05-03 18:40:57 201 1

原创 YOLOv5 CPU和GPU环境搭建(道路识别)

YOLOv5 CPU和GPU环境搭建(道路识别)

2022-06-22 16:13:55 5276 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除