总结
GLM模型的改进版ChatGLM2,包括其技术解析、代码实现和推理部署的演示情况。首先回顾了GPT模型的基本知识,然后详细讲解了ChatGLM2的自回归填空方法和自回归注意力计算。同时,还介绍了ChatGLM2相较于初代版本的改进,包括训练数据更多、新增了多项注意力和flash attention等特性。最后,提到了ChatGLM3的一些特性。
课程链接第十三课:ChatGLM2_哔哩哔哩_bilibili
Chat GL的技术解析和演示情况以及GPT模型的自回归填空方法和自回归部分的生成过程。
ChatGLM2技术解析和特性介绍
ChatGLM2-6B 是开源中英双语对话模型ChatGLM-6B 的第二代版本,保留初代模型对
话流畅、部署门槛较低等众多优秀特性
GLM模型的自回归填空方法
基于上下文预测下一个token的生成模型
SOVITATION中的掩码方法和模型训练,以及多项注意力和flash attention的应用,旨在提高推理速度。
GenAtten:生成注意力机制,用于序列生成问题,如机器翻译。
多任务学习: 通过多任务学习,模型可以同时进行多个任务的学习和生成
长度预测:通过长度预测,模型可以预测下一个单词的长度,从而更好地生成序列。
解码方面的优化方法一一MQA它在多头注意力基础上实现了头间共享权重。
多头注意力机制:多头注意力机制的计算方式,以及它在序列模型中的应用。
mqa:mqa算法的介绍,包括它的思想和具体计算方式。
注意力机制:注意力机制的计算方式和作用以及它在模型中的应用。
多头注意力机制的不同变种包括multi-Query ttention、multi head attention和group Query attention等在推理速度和模型效果上的表现。
多头注意力机制:介绍了多头注意力机制的计算方式和应用。
讲解了miquery和multi head attention的计算方式和效果比较
多头注意力机制的模型效果和一些技巧。
如何将预训练模型转换为multi-Query ttention
注意力机制的计算过程和实现方法
硬件层面的注意力机制,包括动态计算和硬件优化
Flash Attention技术
作用:旨在优化Transformer模型的计算.
复杂度和空间复杂度.提高计算效率。
硬件结构优化与加速
存储器层次结构和计算效率
在计算过程中如何优化读取和写入速度
图像处理中的读取和写入的实现方式,以及如何在GPU的不同层次之间进行数据传输。
注意力机制的计算方式.包括软注意力和闪存注意力的计算方式以及其优势。
分块计算和动态更新:分块计算和动态更新的方法,避免了全量数据计算和内存存储的开销。
多头注意力:多头注意力的概念和相关代码实现,并提及了注意力掩码的计算方法。
注意力掩码计算: 详细介绍了注意力掩码的计算方法,包括行掩码、列掩码和元素掩码
如何使用注意力和softmax函数来计算注意力概率
如何使用TensorFlow进行编程
手机方面的内容:手机方面的内容,包括手机的组成、操作系统、应用程序等。
AI助手的实现:AI助手的实现包括使用TensorFlow进行编程、使用注意力机制进行语言生成等。
基于mind transformers的推理代码实现了一个交互式对话框可以方便地进行处理和微调
基于MySportTransformers实现对话模型的推理代码
生成代码中的注意力计算和输出形式
输入序列中只有一个词的情况和N个词的情况
矩阵运算、代码演示、模型训练和推理等相关内容
ChatGLM3的升级和新特性
自然语言表达方式的问题
使用lossmask进行训练时需要注意的问题以及ChatGLM3中的四种special token的含义和用法。
设计特殊token来间隔输入内容
special token的含义和使用方式
人工智能模型的对话流程和输出方式
对话模式中的三种类型:chat, tool、codeinterpreter和工具模式,及它们的使用方法和特点。
工具模式:在工具模式下,需要根据特定的token来设定系统角色和输入输出格式。
调用工具:使用工具模式时,需要调用各种工具来完成任务,并根据其输出进行相应的回答。
调用工具Observation可以定位到句子的结尾,从而实现更准确的生成。
如何通过注册工具和输入参数来调用工具并解释了代码解释器的概念和用途
工具模式:在工具模式下,可以通过注册函数和使用工具来实现功能
观察模式: 观察模式下,可以通过观察和反馈来进行模型训练
代码解释器:代码解释器可以作为一种模型,用于执行代码并生成相应的输出。