题目描述
如果一棵二叉树满足下述几个条件,则可以称为 奇偶树 :
- 二叉树根节点所在层下标为 0 ,根的子节点所在层下标为 1 ,根的孙节点所在层下标为 2 ,依此类推。
- 偶数下标 层上的所有节点的值都是 奇 整数,从左到右按顺序 严格递增
- 奇数下标 层上的所有节点的值都是 偶 整数,从左到右按顺序 严格递减
给你二叉树的根节点,如果二叉树为 奇偶树 ,则返回 true ,否则返回 false 。
示例 1:
输入:root = [1,10,4,3,null,7,9,12,8,6,null,null,2]
输出:true
解释:每一层的节点值分别是:
0 层:[1]
1 层:[10,4]
2 层:[3,7,9]
3 层:[12,8,6,2]
由于 0 层和 2 层上的节点值都是奇数且严格递增,而 1 层和 3 层上的节点值都是偶数且严格递减,因此这是一棵奇偶树。
示例 2:
输入:root = [5,4,2,3,3,7]
输出:false
解释:每一层的节点值分别是:
0 层:[5]
1 层:[4,2]
2 层:[3,3,7]
2 层上的节点值不满足严格递增的条件,所以这不是一棵奇偶树。
示例 3:
输入:root = [5,9,1,3,5,7]
输出:false
解释:1 层上的节点值应为偶数。
示例 4:
输入:root = [1]
输出:true
示例 5:
输入:root = [11,8,6,1,3,9,11,30,20,18,16,12,10,4,2,17]
输出:true
提示:
- 树中节点数在范围 [1, 105] 内
- 1 <= Node.val <= 106
题解思路
我们采用广度优先遍历算法 对每一层的节点一次遍历 并将其左右子节点添加到队列中
- 如果层数与节点值同为偶数或者奇数则返回False
- 如果层数为偶数的情况下 节点的值不是依次递增 则返回False
- 如果层数为奇数的情况下 节点的值不是依次递减 则返回False
否则返回True
题解代码
class Solution:
def isEvenOddTree(self, root: Optional[TreeNode]) -> bool:
queue=[root]
level=0
while queue:
#判断层数是奇数还是偶数 如果是偶数则为0 如果是奇数则为正无穷
pre=float('inf') if level%2 else 0
#定义下一层节点数组
nxt=[]
#遍历该层节点
for node in queue:
val=node.val
if level%2==val%2 or level%2==0 and val<=pre or level%2==1 and val>=pre:
return False
pre=val
if node.left:
nxt.append(node.left)
if node.right:
nxt.append(node.right)
queue=nxt
level+=1
return True