哈夫曼树的编码过程

什么叫哈夫曼树?

给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree), 还有的书翻译为霍夫曼树。

赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

几个概念:

路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1

结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积

树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,称为WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。

关于如何对树编码:
规定哈夫曼数的左边分支为0,右边分支为1
则从根节点到每个叶子结点所经过的分支对应的0和1组成的序列便为该节点对应字符的编码,这样的编码称为哈夫曼编码
哈夫曼编码是0/1二进制编码

 如图所示:

3的二进制编码为:(0000),5的二进制编码为(0001),23的二进制编码为(01),剩下的以此类推

由以上结果我们得出结论:权值越大的字符编码越短。

在一组编码中,短的哈夫曼编码不可能是长的哈夫曼编码的前缀

比如:0,100,110,1110,1100,二者重叠

哈夫曼树代码如下:

/*
哈夫曼树
*/
package huffmantree;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HuddmanTree {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
    
        int arr[] = {13,7,8,3,29,6,1};
        Node root = createHuffmanTree(arr);
        
        //测试一把
        preOrder(root);
    }
        
    //编写一个前序遍历的方法
    public static void preOrder(Node root) {
        if(root != null) {
            root.preOrder();
        }else {
            System.out.println("空树,不能遍历");
        }
    }
    
    
    /**
     *  
     * @param arr   需要创建成赫夫曼树的数组
     * @return  创建好后赫夫曼树的根节点
     */
    //创建赫夫曼树的方法
    public static Node createHuffmanTree(int[] arr) {
        // TODO Auto-generated method stub
        //第一步:为了操作方便,
        //1.遍历arr数组
        //2.将arr的每个元素构建成一个Node、
        //3.将node放到ArrayList中(便于管理)
        List<Node> nodes = new ArrayList<Node>();
        for(int value:arr) {
            nodes.add(new Node(value));
        }
        
        //处理过程是一个循环的过程
        //结束的标志:ArrayList中只有一个root结点
        
        while(nodes.size() > 1) {
            //先要排序,从小到大
            Collections.sort(nodes);
            
            //System.out.println("nodes="+nodes);
            
            //取出根节点权值最小的二叉树
            //1.取出权值最小的二叉树结点(认为是二叉树)
            Node leftNode = nodes.get(0);
            //2.取出第二小的结点(认为是二叉树)
            Node  rightNode= nodes.get(1);
            
            //3.构建一颗新的二叉树
            Node parent = new Node(leftNode.value + rightNode.value);
            parent.left = leftNode;
            parent.right = rightNode;
            
            //4.从ArrayList中删除处理过得二叉树
            nodes.remove(leftNode);
            nodes.remove(rightNode);
            
            //5.将parerent加入到nodes
            nodes.add(parent);
        }
        
        //返回赫夫曼树的root结点
        return nodes.get(0);
    }
}


//创建结点类
//为了让Node对象支持排序Collections集合排序
//让Node实现Comparble接口
class Node implements Comparable<Node>{
    int value;//结点权值
    Node left;//左子节点
    Node right;//右子节点
    
    //写一个前序遍历
    public void preOrder() {
        System.out.println(this);
        if(this.left !=null) {
            this.left.preOrder();
        }
        if(this.right !=null) {
            this.right.preOrder();
        }
    }
    
    public Node(int value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }

    @Override
    public int compareTo(Node o) {
        // TODO Auto-generated method stub
        // this.value-0.value表示从小到大排序
        return this.value - o.value;
    }
    
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值