什么叫哈夫曼树?
给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree), 还有的书翻译为霍夫曼树。
赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近。
几个概念:
路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1
结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积
树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,称为WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。
关于如何对树编码:
规定哈夫曼数的左边分支为0,右边分支为1
则从根节点到每个叶子结点所经过的分支对应的0和1组成的序列便为该节点对应字符的编码,这样的编码称为哈夫曼编码
哈夫曼编码是0/1二进制编码
如图所示:
3的二进制编码为:(0000),5的二进制编码为(0001),23的二进制编码为(01),剩下的以此类推
由以上结果我们得出结论:权值越大的字符编码越短。
在一组编码中,短的哈夫曼编码不可能是长的哈夫曼编码的前缀
比如:0,100,110,1110,1100,二者重叠
哈夫曼树代码如下:
/*
哈夫曼树
*/
package huffmantree;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
public class HuddmanTree {
public static void main(String[] args) {
// TODO Auto-generated method stub
int arr[] = {13,7,8,3,29,6,1};
Node root = createHuffmanTree(arr);
//测试一把
preOrder(root);
}
//编写一个前序遍历的方法
public static void preOrder(Node root) {
if(root != null) {
root.preOrder();
}else {
System.out.println("空树,不能遍历");
}
}
/**
*
* @param arr 需要创建成赫夫曼树的数组
* @return 创建好后赫夫曼树的根节点
*/
//创建赫夫曼树的方法
public static Node createHuffmanTree(int[] arr) {
// TODO Auto-generated method stub
//第一步:为了操作方便,
//1.遍历arr数组
//2.将arr的每个元素构建成一个Node、
//3.将node放到ArrayList中(便于管理)
List<Node> nodes = new ArrayList<Node>();
for(int value:arr) {
nodes.add(new Node(value));
}
//处理过程是一个循环的过程
//结束的标志:ArrayList中只有一个root结点
while(nodes.size() > 1) {
//先要排序,从小到大
Collections.sort(nodes);
//System.out.println("nodes="+nodes);
//取出根节点权值最小的二叉树
//1.取出权值最小的二叉树结点(认为是二叉树)
Node leftNode = nodes.get(0);
//2.取出第二小的结点(认为是二叉树)
Node rightNode= nodes.get(1);
//3.构建一颗新的二叉树
Node parent = new Node(leftNode.value + rightNode.value);
parent.left = leftNode;
parent.right = rightNode;
//4.从ArrayList中删除处理过得二叉树
nodes.remove(leftNode);
nodes.remove(rightNode);
//5.将parerent加入到nodes
nodes.add(parent);
}
//返回赫夫曼树的root结点
return nodes.get(0);
}
}
//创建结点类
//为了让Node对象支持排序Collections集合排序
//让Node实现Comparble接口
class Node implements Comparable<Node>{
int value;//结点权值
Node left;//左子节点
Node right;//右子节点
//写一个前序遍历
public void preOrder() {
System.out.println(this);
if(this.left !=null) {
this.left.preOrder();
}
if(this.right !=null) {
this.right.preOrder();
}
}
public Node(int value) {
this.value = value;
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
@Override
public int compareTo(Node o) {
// TODO Auto-generated method stub
// this.value-0.value表示从小到大排序
return this.value - o.value;
}
}