张量分解算法(CP分解)

本文介绍了张量分解中的CPD(Canonical Polyadic Decomposition)概念,包括张量的基本定义、CP分解的形式及其实现方法。张量的低秩近似在寻找合适秩R的过程中,通常通过迭代和ALS算法来求解。在智能反射表面辅助的MIMO系统中,CPD可能用于信道估计等任务,具有重要应用价值。
摘要由CSDN通过智能技术生成

       博主今天阅读文献《PARAFAC-Based Channel Estimation for Intelligent Reflective Surface Assisted MIMO System》一文中,发现了一个新的名词-----------------(CPD,Canonical Polyadic Decomposition),于是去查阅了相关资料理解具体含义。

        一、CP分解是张量分解中的一个分支,那么什么是张量分解?

        张量:一般一维数组,我们称之为向量(vector),二维数组,我们称之为矩阵(matrix);三维数组以及多位数组,我们称之为张量(tensor)。

        

          CP 分解( Canonical Polyadic Decomposition ,CPD)

三阶张量的CP 分解

 CP 分解将一个N阶的张量\chi \in\mathbb{R} ^{I_{1}\times I_{2}\cdots I_{N}}分解为R个秩为1的张量和的形式即:

\chi =\sum_{r=1}^{R}\lambda _{r}a_{r}^{(1)}\circ a_{r}^{(2)}\circ a_{r}^{(3)}\circ \cdots a_{r}^{(N)}

 a_{r}^{(n)}是一个单位向量,通过定义A^{(n)}=\left [ a_{1}^{n} a_{2}^{n} \cdots a_{R}^{n}\right ],D=diag(\lambda ).上面的公式可以改为:

\chi =D\times _{1}A^{(1)}\times_{2}A^{(2)}\cdots \times_{N}A^{(N)}

矩阵的表达式

X_{(n)}=A^{n}D(A^{(N)}\bigodot \cdots A^{(n+1)}\bigodot A^{(n-1)}\cdots \bigodot A^{1})^{\top }

如果张量\chi为3阶,分解为以下形式:

三阶张量的CP 分解

 二、张量的低秩近似

        在矩阵中,最小的秩为1的矩阵和的个数为矩阵的秩,张量中R的最小值为张量的秩,记作Rank(\chi )=R,需要注意的是张量中秩的定义是不唯一的,张量秩的个数求解就是NP问题。可以提取张量的前k个因子作为张量\chi的低秩近似值:

\chi =\sum_{k=1}^{K}\lambda _{k}a_{k}^{(1)}\circ a_{k}^{(2)}\circ \cdots a_{k}^{(N)}

,即张量的秩Rank-n 近似无法渐进地得到。

三、CP的求解

       CP分解的求解首先要确定分解的秩1张量的个数,正如前面介绍的由于张量的秩Rank-n 近似无法渐进地得到。通常我们通过迭代的方法对R从1开始遍历直到找到一个合适的解。当数据无噪声时,重构误差为0所对应的解即为CP分解的解,当数据有噪声的情况下,可以通过CORCONDIA算法估计RR。当分解的秩1张量的个数确定下来之后,可以通过交替最小二乘方法对CP分解进行进行求解。下面我们以三阶张量为例对ALS 算法进行阐述。    

        假设\chi \in \mathbb{R}^{I\times J\times k}是一个三阶张量,对它进行张量分解的表达式(我被CSDN自带的公式编辑折服了,决定用MathType):

 ALS算法首先固定B,C去求解A,接着固定A和C去求解B,然后固定B 和C去求解A,这样不断地重复迭代直到达到收敛条件。固定矩阵B和C,可以得到上面的式子在mode-1矩阵展开的时候形式为

其中: 

那么上述目标函数的最优解为:

 此处矩阵边上的“+”代表Moore-Penrose广义逆,它常被用于求得或简化非一致线性方程组的最小范数最小二乘解(最小二乘法),有兴趣可以自己了解一下,这里不过多阐述。

计算的时候把的每一列单位化,,将上述式子推广到高阶形式:

 可以用交替最小二乘法计算CPD,假设张量的个数是提前知道的,设为R:

get!

欢迎补充

 

 

 

 

CP张量分解算法是一种常用的高维数据分析方法,用于将一个高维张量分解为多个低维张量的乘积形式。这种分解可以帮助我们理解和挖掘数据中的潜在结构和模式。在Python中,可以使用Tensorly库来实现CP张量分解算法。 Tensorly是一个用于张量操作和分解的Python库,它提供了丰富的功能和工具来处理高维数据。下面是使用Tensorly库进行CP张量分解的基本步骤: 1. 安装Tensorly库:可以使用pip命令在Python环境中安装Tensorly库,命令如下: ``` pip install tensorly ``` 2. 导入Tensorly库:在Python代码中导入Tensorly库,命令如下: ```python import tensorly as tl ``` 3. 加载数据:将需要进行CP张量分解的高维张量加载到Python中,可以使用NumPy数组或Tensorly库提供的张量对象。 4. 进行CP张量分解:使用`tl.decomposition.parafac`函数进行CP张量分解,该函数接受一个高维张量作为输入,并返回分解后的低维张量。 5. 获取分解结果:根据需要,可以获取分解后的低维张量,以及对应的权重和模式矩阵。 下面是一个简单的示例代码,演示了如何使用Tensorly库进行CP张量分解: ```python import tensorly as tl # 加载数据 tensor = tl.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) # 进行CP张量分解 factors = tl.decomposition.parafac(tensor, rank=2) # 获取分解结果 weights = factors[0] mode_matrices = factors[1:] # 打印分解结果 print("权重:", weights) for i, mode_matrix in enumerate(mode_matrices): print("模式矩阵", i+1, ":", mode_matrix) ``` 这是一个简单的示例,实际应用中可以根据具体需求进行参数设置和数据处理。希望对你有帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值