一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:
0 <= n <= 100
int numWays(int n) {
int a =1,b=1,sum;
for(int i=0;i<n;i++){
sum=(a+b)%1000000007;
a=b;
b=sum;
}
return a;
}
解题思路:
n=1时 :1
n=2 时:(1,1) (2)
n=3时:(1,2) (1,1,1) (2,1)
n=4时:(1,1,2) (2,2) (1,2,1) (1,1,1,1) (2,1,1)
发现规律了: n=4中的(1,1,2) (2,2)是从n=2中跳2台阶得到的,(1,2,1) (1,1,1,1) (2,1,1)是从n=3中跳1台阶得到的
所以 n的跳法 = n-1 的跳法都跳一个台阶 + n-2的跳法都跳两个台阶
所以f(n) =f(n-1)+f(n-2)