P1361 小M的作物(最小割)

题目错别字很多,且题意不清,但题目还是很好的
经典的最小割模型,结果=收益和-最小割
形如下面的模型
有 n 个物品和两个集合 A,B,如果将一个物品放入 A 集合会得到 a i a_i ai,放入 B 集合会得到 b i b_i bi,还有若干个形如 u i u_i ui, v i v_i vi, w i w_i wi 限制条件,表示如果 u i u_i ui v i v_i vi 在一个集合会获得 w i w_i wi。每个物品必须且只能属于一个集合,求最大的收益。
考虑建图,A,B看成S和T,不加后面的点集限制,就只需要S向所有物品连边(权为 a i a_i ai),所有物品向T点连边(权为 b i b_i bi)。
现在考虑后面的约束集,假设在A集合里有影响,因为涉及到多个物品,一一连边很明显是不现实的,这个时候可以建一个虚点,从S向虚点连边(权为 w i w_i wi),从虚点向涉及到的物品连边(权为 i n f inf inf(无穷大)),权为 i n f inf inf的原因是不能切断虚点与物品的连接。
根据最大流最小割原理,dinic跑一个最大流即可

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}

const int maxn = 1e5+10;
const int maxm = 1e7+10;

const int inf = 0x7f7f7f7f;

typedef struct Dinic{
	typedef struct Edge
	{
		int u,v,w,nxt;
	}Edge;
	int head[maxn],hcnt;
	int dep[maxn];
	int cur[maxn];
	Edge e[maxm];
	int S,T,N;
	void init()
	{
		memset(head,-1, sizeof head);
		hcnt = 0;
		S = T = N = 0;
	}
	void adde(int u,int v,int w)
	{
		e[hcnt].u = u,e[hcnt].v = v,e[hcnt].w = w;
		e[hcnt].nxt = head[u];head[u] = hcnt++;
		e[hcnt].u = v,e[hcnt].v = u,e[hcnt].w = 0;
		e[hcnt].nxt = head[v];head[v] = hcnt++;
		// 01 23 45
		//i i^1
	}

	//BFS
	int bfs()
	{
		rep(i,0,N)
		{
			dep[i] = inf;
		}
		queue<int> q;
		q.emplace(S);dep[S] = 0;
		while(!q.empty())
		{
			int u = q.front();q.pop();
			for(int i = head[u];~i;i = e[i].nxt)
			{
				int v = e[i].v,w = e[i].w;
				if(w > 0 && dep[u] + 1 < dep[v])
				{
					dep[v] = dep[u] + 1;
					if(v == T)
						return 1;
					q.emplace(v);
				}
			}
		}
		return dep[T] != inf;
	}
	//DFS
	int dfs(int s,int mw)
	{
		if(s == T) return mw;
		for(int i  = cur[s];~i;i = e[i].nxt)
		{
			cur[s] = i;
			int v = e[i].v,w = e[i].w;
			if(w <= 0 || dep[v] != dep[s] + 1)
			{
				continue;
			}
			int cw = dfs(v,min(w,mw));
			if(cw <= 0) continue;
			e[i].w -= cw;
			e[i^1].w += cw;
			return cw;

		}
		return 0;
	}
	ll dinic()
	{
		ll res = 0;
		while(bfs())
		{
			rep(i,0,N)
			{
				cur[i] = head[i];
			}
			while(int d = dfs(S,inf))
			{
				res += 1ll*d;
			}
		}
		return res;
	}
} Dinic;


int n,m,s,t;
int x;
int main(int argc, char const *argv[])
{
	ll sum = 0;
	scanf("%d",&n);
	Dinic din;
	din.init();
	s = 0, t = n + 1;
	din.S = 0,din.T = n + 1;

	rep(i,1,n+1) scanf("%d",&x),sum += 1ll * x,din.adde(s,i,x);
	rep(i,1,n+1) scanf("%d",&x),sum += 1ll * x,din.adde(i,t,x);

	scanf("%d",&m);
	din.N  = (n + m * 2) * 2;
	rep(i,1,m+1)
	{
		int k,c1,c2;
		scanf("%d%d%d",&k,&c1,&c2);
		sum += c1 + c2;
		din.adde(s,n+i+1,c1);
		din.adde(n+m+1+i,t,c2);
		while(k--)
		{
			int s;
			scanf("%d",&s);
			din.adde(n+i+1,s,inf);
			din.adde(s,i+n+m+1,inf);
		}
	}
	ll res = din.dinic();
	//cout <<  res << endl; 
	printf("%lld\n",sum-res);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值