java调用yolo模型识别目标

首先在我们的项目中添加DJL和其必需的依赖然后

<dependencies>
2    <dependency>
3        <groupId>ai.djl</groupId>
4        <artifactId>api</artifactId>
5        <version>YOUR_DESIRED_VERSION</version>
6    </dependency>
7    <dependency>
8        <groupId>ai.djl.mxnet</groupId>
9        <artifactId>mxnet-engine</artifactId>
10        <version>YOUR_DESIRED_VERSION</version>
11    </dependency>
12    <!-- 添加其他可能需要的依赖,如模型Zoo的依赖 -->
13</dependencies>

然后下载YOLO模型

在我们的项目中加载模型

 public static void main(String[] args) throws ModelException {
8        // 加载模型
9        Model model = Model.newInstance();
10        model.setBlock(BasicModelZoo.YOLO_V3.getBlocks());
11        model.load("resources/yolov3");
12    }

对图像进行预测之前,通常需要对其进行预处理,以符合模型输入的要求。这包括调整尺寸、归一化等操作。

加载并预处理图像后,就可以执行对象检测了。以下是一个简化的示例,展示如何使用模型进行预测:

// 假设img是已经预处理好的图像数据
2float[][][] imgData = ...; // 你的图像数据
3
4try (Predictor<float[], DetectedObjects> predictor = model.newPredictor()) {
5    DetectedObjects detections = predictor.predict(imgData);
6    // 处理检测结果
7    detections.items().forEach(item -> System.out.println(item.getClassName()));
8}

 最后,DetectedObjects对象包含了检测到的所有物体及其类别、置信度和边界框等信息。你可以根据需要处理这些信息,比如绘制边界框到原图上显示检测结果。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值