首先在我们的项目中添加DJL和其必需的依赖然后
<dependencies>
2 <dependency>
3 <groupId>ai.djl</groupId>
4 <artifactId>api</artifactId>
5 <version>YOUR_DESIRED_VERSION</version>
6 </dependency>
7 <dependency>
8 <groupId>ai.djl.mxnet</groupId>
9 <artifactId>mxnet-engine</artifactId>
10 <version>YOUR_DESIRED_VERSION</version>
11 </dependency>
12 <!-- 添加其他可能需要的依赖,如模型Zoo的依赖 -->
13</dependencies>
然后下载YOLO模型
在我们的项目中加载模型
public static void main(String[] args) throws ModelException {
8 // 加载模型
9 Model model = Model.newInstance();
10 model.setBlock(BasicModelZoo.YOLO_V3.getBlocks());
11 model.load("resources/yolov3");
12 }
对图像进行预测之前,通常需要对其进行预处理,以符合模型输入的要求。这包括调整尺寸、归一化等操作。
加载并预处理图像后,就可以执行对象检测了。以下是一个简化的示例,展示如何使用模型进行预测:
// 假设img是已经预处理好的图像数据
2float[][][] imgData = ...; // 你的图像数据
3
4try (Predictor<float[], DetectedObjects> predictor = model.newPredictor()) {
5 DetectedObjects detections = predictor.predict(imgData);
6 // 处理检测结果
7 detections.items().forEach(item -> System.out.println(item.getClassName()));
8}
最后,DetectedObjects
对象包含了检测到的所有物体及其类别、置信度和边界框等信息。你可以根据需要处理这些信息,比如绘制边界框到原图上显示检测结果。