参数估计

参数估计(parameter estimation):用样本统计量去估计总体的参数。【用样本估计量θ ̂作为总体参数θ】

估计量:在参数估计中,用来估计总体参数的统计量称为估计量(estimator)。

              如样本均值、样本比例、样本方差等都可以是一个统计量。

估计值:根据一个具体的样本计算出来的估计量的数值称为估计值𝜃 ̂(estimated value)。

点估计:用样本统计量的某个取值直接作为总体参数的估计值θ。

由于样本是随机的,抽出一个具体的样本得到的估计值很可能不同于总体真值。再用点估计值代表总体参数值的同时,还必须给出点估计值的可靠性。也就是说必须能说出点估计值与总体参数的真实值接近的程度。但是一个点估计值的可靠性是由它的抽样标准误差来衡量的,这表明一个具体的点估计值无法给出估计的可靠性的度量,因此就不能完全依赖于一个点估计值,而是围绕点估计值构造总体参数的一个区间,这就是区间估计。

区间估计:是在点估计的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减估计误差得到。

置信区间:在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

                  其中区间的最小值称为置信下限,最大值称为置信上限。

置信水平(又称 置信度|置信系数): 一般地,如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例。

 

评价估计量的标准:

1、无偏性:指估计量抽样分布的数学期望等于被估计的总体参数。

2、有效性:指对同一总体参数的两个无偏估计量,有更小标准差的估计量更有效。

                    在无偏估计条件下,估计量的方差越小,估计就越有效。

3、一致性:随着样本量的增大, 估计量的值越来越接近被估计总体的参数

 

如何用样本统计量来构造一个总体参数的置信区间?

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值