《百面机器学习》学习笔记(一)—特征工程

一、什么是特征工程

在机器学习中,没有充足的数据、合适的特征,再强大的模型结构也无法得到满意的输出 。 正如一句业界经典的话所说,“ Garbage in, garbage out” 。 对于一个机器学习问题,数据和特征往往决定了结果的上限,而模型、算法的选择应优化则是在逐步接近这个上限。

特征工程,服各思义,是对原始数据进行一系列工程处理, 将其提炼为特征,作为输入供算法和模型使用。 从本质上来讲,特征工程是一个表示和展现数据的过程。 在实际工作中,特征工程旨在去除原始数据中的杂质和冗余,设计更高效的特征以刻画求解的问题与预测模型之阔的关系。

二、特征归一化

对数值类型的特征做归一化可以将所有的特征都统一到一个大致相同的数值区间内 。 最常用的方法主要再以下两种。

  1. 线性函数归一化(对原始数据线性变换,映射到[0,1]范围) X n o r m = X − X m i n X m a x − X m i n X_{norm}=\frac{X-X_{min}}{X_{max}-X{min}} Xnorm=XmaxXminXXmin
  2. 零均值归一化(将原始数据映射到均值为0、标准差为1的分布上,假设原始特征的均值为 μ \mu μ、标准差为 σ \sigma σ z = x − μ σ z=\frac{x-\mu}{\sigma} z=σxμ
    在这里插入图片描述

三、文本表示模型

文本是一类非常重要的非结构化数据, 如何表示文本数据一直是机器学习领域的一个重要研究方向。

1、词袋模型
最基础的文本表示模型是词袋模型。顾名思义,就是将每篇文章看成一袋子词,并忽略每个i司出现的顺序。具体地说,就是将整段文本以词为单位切分开,然后每篇文章可以表示成一个长向量,向量中的每一维代表一个主要词,而该维对应的权重则反映了这个词在原文章中的重要程度。常用 TF-IDF 来计算权重,公式为
T F − I D F ( t , d ) = T F ( t , d ) ∗ I D F ( t ) TF-IDF(t,d)=TF(t,d)*IDF(t) TFIDF(t,d)=TF(t,d)IDF(t)
其中 T F ( t , d ) TF(t,d) TF(t,d)为单词 t t t 在文档 d d d 中出现的频率, I D F ( t ) IDF(t) IDF(t) 是逆文档频率,
用来衡量单词 t t t 对表达语义所起的重要性,表示为 I D F ( t ) = l o g 文 章 总 数 包 含 单 词 t 的 文 章 总 数 + 1 IDF(t)=log\frac{文章总数}{包含单词t的文章总数+1} IDF(t)=logt+1
直观的解释是,如果一个单词在非常多的文章里面都出现,那么它可能是一个比较通用的词汇,对于区分某篇文章特殊语义的贡献较小,因此对权重做一定惩罚。

2、N-gram模型
将文章进行单词级别的划分离时候并不是一种好的做法,比如英文中的 natural language processing (自然语言处理)一词;如果将 natural, language, processing 这 3 个词拆分开来,所表达的含义与三个词连续出现时大相径庭。 通常,可以将连续出现的 n 个词( n<=N) 组成的词组( N-gram )也作为一个单独的恃征般到向量表
示中去,向成 N-gram 模型。 另外,同一个词可能有多种词性变化却具有相似的含义。 在实际应用中,一般会对单词进行词干抽取( Word Stemming )处理,即将不同词性的单词统一成为同一词干的形式。

3、主题模型
主题模型用于从文本库中发现有代表性的主题(得到每个主题上面词的分布特性 ) ,并且能够计算出每篇文章的主题分布

4、词嵌入与深度学习模型
词嵌入是一类将词向量化的模型的统称, 核心思想是将每个词都映射成低维空间(通常 K=50 ~ 300 维)上的一个稠密向量 ( Dense Vector ) 。 K维空间的每一维也可以看作一个隐含的主题 , 只不过不像主题模型中的主题那样直观。
由于词嵌入将每个词映射成一个 K维的向量, 如果一篇文档有 N个词,就可以用一个 N×K维的矩阵来表示这篇文档,但是这样的表示过于底层。 在实际应用中,如果仅仅把这个矩阵作为原文本的表示特征输入到机器学习模型中,通常很难得到令人满意的结果。因此, 还需要在此基础之上加工出更高层的特征。 在传统的浅层机器学习模型中,一个好的特征工程往往可以带来算法效果的显著提升。 而深度学习模型正好为我们提供了一种自动地进行特征工程的方式,模型中的每个隐层都可以
认为对应着不同抽象层次的特征。 从这个角度来讲,深度学习模型能够打败浅层模型也就顺理成章了 。 卷积神经网络和循环神经网络的结构在文本表示中取得了很好的效果,主要是由于它们能够更好地对文本进行建模,抽取出一些高层的语义特征。 与全连接的网络结向相比, 卷积神经网络和循环神经网络一方面很好地抓住了文本的特性,另一方面又减少了网络中待学习的参数,提高了训练速度,并且降低了过拟合的风险。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值