梯度下降算法(Gradient Descent)

本文详细介绍了梯度下降算法,作为机器学习中的重要优化手段,它通过计算梯度调整模型参数以最小化损失函数。文章涵盖了算法原理、应用广泛性、计算流程、注意事项以及一个代码示例,展示了如何通过梯度下降寻找函数最小值,特别提到了反向传播在深度学习中的角色。
摘要由CSDN通过智能技术生成

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

算法引言

梯度下降算法,这个在机器学习中非常常见的算法,可以用下山的例子来形象地解释。想象一下,你在一座山的顶端,目标是要以最快的速度下到山底。但由于浓雾遮挡,你看不清整座山的轮廓,只能感觉到脚下的坡度。这时候,你会选择沿着最陡峭的坡度方向走,因为那很可能是下山最快的路线。在梯度下降算法中,”下山”就是寻找损失函数的最小值,”最陡峭的坡度”则对应着梯度,我们通过计算梯度并不断调整参数,来逐渐接近这个最小值。

算法应用

梯度下降算法的应用非常广泛。在机器学习领域,尤其是在训练神经网络时,它是最常用的优化算法之一。通过调整模型的参数以最小化损失函数,梯度下降帮助模型学习从数据中提取模式。

梯度下降算法的潜在价值在于它的通用性和效率。它可以应用于几乎任何可以微分的损失函数,适用于大规模数据集和复杂的模型。虽然它有一些局限性,比如容易陷入局部最小值,或者在高维空间中效率降低,但通过各种改进的版本(如随机梯度下降、小批量梯度下降)以及与其他技术(如动量法或自适应学习率算法)的结合,这些问题可以得到有效缓解。

算法计算流程

梯度下降算法是一种用于寻找函数最小值的优化算法。它通过不断迭代,更新参数值以减少函数值。以下是梯度下降算法的详细计算流程,以函数y=x^{2}为例:
1. 定义:
梯度下降算法通过计算函数的梯度来找到该函数的局部最小值。在多维空间中,梯度是函数在某一点上升最快的方向,而梯度的负方向就是下降最快的方向。通过在梯度的负方向上调整变量,可以使函数值逐渐减小。
2. 公式:
一般的梯度下降公式为:
                                               x_{\mathrm{new~}}=x_{\mathrm{old~}}-\alpha\cdot\nabla f(x)
其中, xold 是当前点的坐标, xnew 是更新后的坐标, α 是学习率 (步长), ∇f(x)是函数在 x 点的梯度。

3. 例子:
对于函数 y=x^{2},它的梯度 (导数) 为\frac{dy}{dx}=2x
假设初始点 x_o=3 ,学习率 α=0.1 。
计算过程如下:
– 第1次迭代:

                                              \begin{aligned}x_1&=x_0-\alpha\cdot\left.\frac{dy}{dx}\right|_{x=x_0}=3-0.1\cdot2\cdot3=2.4\\y_1&=x_1^2=2.4^2=5.76\end{aligned}
– 第2次迭代:

                            \begin{aligned}&x_2=x_1-\alpha\cdot\left.\frac{dy}{dx}\right|_{x=x_1}=2.4-0.1\cdot2\cdot2.4=1.92\\&y_2=x_2^2=1.92^2=3.6864\end{aligned}                    

以此类推,每次迭代后 x 的值都会更新, y 的值逐渐减小。
4. 注意事项:
– 学习率的选择至关重要,过大可能导致超调,过小可能导致收敛速度缓慢。
– 梯度下降可能只能找到局部最小值而非全局最小值。
– 初始点的选择可能影响最终结果。

5. 关键点使用:
– 在实际应用中,如机器学习的参数优化,首先需要确定损失函数,然后通过梯度下降来最小化这个损失函数。
– 在每次迭代中计算损失函数的梯度,并更新参数。
– 监控损失函数的变化情况,直到损失函数收敛或达到一定的迭代次数后停止迭代。

代码示例

现在,让我们来生成一段解决这个问题的代码。我们将模拟梯度下降算法来寻找一个函数的最小值。为了简化问题,我们可以假设这个函数是一个简单的二次函数,比如f(x)=x^{2}。我们的目标是找到使得 f(x) 最小的 x 值。在这个例子中,显然答案是 x=0 ,但我们将通过梯度下降算法来逼近这个解。

import numpy as np
import matplotlib.pyplot as plt

# 定义函数和它的导数
def f(x):
    return x ** 2

def df(x):
    return 2 * x

# 梯度下降算法
def gradient_descent(starting_point, learning_rate, n_iterations):
    x = starting_point
    trajectory = [x]
    for _ in range(n_iterations):
        gradient = df(x)
        x = x - learning_rate * gradient
        trajectory.append(x)
    return np.array(trajectory)

# 参数设置
starting_point = 10  # 起始点
learning_rate = 0.1  # 学习率
n_iterations = 50    # 迭代次数

# 执行梯度下降
trajectory = gradient_descent(starting_point, learning_rate, n_iterations)

# 绘制结果
x = np.linspace(-11, 11, 400)
y = f(x)

plt.figure(figsize=(10, 6))
plt.plot(x, y, label='f(x) = x^2')
plt.scatter(trajectory, f(trajectory), color='red', marker='o', label='Gradient Descent Steps')
plt.title('Gradient Descent Optimization')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()
plt.grid()
plt.show()

代码的运行结果如下:

图片[1]-梯度下降算法(Gradient Descent)-VenusAI

总的来说,梯度下降算法是机器学习和深度学习中不可或缺的工具,它的应用促进了这些领域的许多重大进展。 ​

反向传播

反向传播是一种有效的计算梯度的方法,在深度学习的模型训练中被广泛使用,原理详解博文:《反向传播》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值