947. 移除最多的同行或同列石头

947. 移除最多的同行或同列石头

链接:https://leetcode-cn.com/problems/most-stones-removed-with-same-row-or-column/

n 块石头放置在二维平面中的一些整数坐标点上。每个坐标点上最多只能有一块石头。

如果一块石头的 同行或者同列 上有其他石头存在,那么就可以移除这块石头。

给你一个长度为 n 的数组 stones ,其中 stones[i] = [xi, yi] 表示第 i 块石头的位置,返回 可以移除的石子 的最大数量。

 

示例 1:

输入:stones = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]]
输出:5
解释:一种移除 5 块石头的方法如下所示:
1. 移除石头 [2,2] ,因为它和 [2,1] 同行。
2. 移除石头 [2,1] ,因为它和 [0,1] 同列。
3. 移除石头 [1,2] ,因为它和 [1,0] 同行。
4. 移除石头 [1,0] ,因为它和 [0,0] 同列。
5. 移除石头 [0,1] ,因为它和 [0,0] 同行。
石头 [0,0] 不能移除,因为它没有与另一块石头同行/列。

示例 2:

输入:stones = [[0,0],[0,2],[1,1],[2,0],[2,2]]
输出:3
解释:一种移除 3 块石头的方法如下所示:
1. 移除石头 [2,2] ,因为它和 [2,0] 同行。
2. 移除石头 [2,0] ,因为它和 [0,0] 同列。
3. 移除石头 [0,2] ,因为它和 [0,0] 同行。
石头 [0,0] 和 [1,1] 不能移除,因为它们没有与另一块石头同行/列。

示例 3:

输入:stones = [[0,0]]
输出:0
解释:[0,0] 是平面上唯一一块石头,所以不可以移除它。

提示:

  • 1 <= stones.length <= 1000
  • 0 <= xi, yi <= 104
  • 不会有两块石头放在同一个坐标点上

思路:如果我们将同行同列抽象成在无向图中的互通关系,整个矩阵就可以被我们抽象成几个连通分量,而对于每个连通分量,我们都有办法一直删除到只剩下一个点。于是 可以删除的点的个数 = 总点数 - 集合个数。在代码中,我们选择另一种实现方式:如果每次合并两个集合,那么可以删除的点就增加1,对于集合的维护我们自然就会想到用并查集来实现。现在我们来探讨一下如何将一个连通分量删除到只剩下一个点:

简单情形:

如上图所示,B、C、D、E都与A相连,因此通过A使得他们相连关联,我们可以将点删除到只剩下点A。

复杂情形:

我们可以这样看上图:B、C、E以A为核心,F、G以D为核心,因此这两个子集合都可以删除非核心点,于是上图可以简化为:

这时候我们发现,一个符合题目要求的关系的集合,都可以是这样一种递归定义的方式,子集合套子集合,最后一定可以留下一个核心点;事实上我们可以按照深度优先遍历的方式遍历连通分量,最后逆序输出,就可以将联通分量删除到只剩下一个点了。

class Solution {
public:

    int Father[1010];
    vector<int> Col[10010], Row[10010];
    unordered_set<int> ColIndex, RowIndex;

    int Find(int x){
        return x == Father[x] ? x : Father[x] = Find(Father[x]) ;
    }

    void Union(int A,int B,int &ans){
        A = Find(A);
        B = Find(B);
        if(A != B){
            ++ ans;
            Father[A] = B;
        }
    }

    int removeStones(vector<vector<int>>& stones) {
        int n = stones.size(), i, x, y, index, root, ans = 0;
        for(i = 0; i < n; ++ i){
            x = stones[i][0], y = stones[i][1];
            Father[i] = i;
            Row[x].push_back(i);
            RowIndex.insert(x);
            Col[y].push_back(i);
            ColIndex.insert(y);
        }
        unordered_set<int>::iterator iter;
        for(iter = RowIndex.begin(); iter != RowIndex.end(); ++ iter){
            index = *iter;
            n = Row[index].size();
            root = Row[index][0];
            for(i = 1; i < n; ++ i){
                Union(root, Row[index][i], ans);
            }
        }
        for(iter = ColIndex.begin(); iter != ColIndex.end(); ++ iter){
            index = *iter;
            n = Col[index].size();
            root = Col[index][0];
            for(i = 1; i < n; ++ i){
                Union(root, Col[index][i], ans);
            }
        }
        return ans;
    }
};

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值