链接:https://leetcode-cn.com/problems/most-stones-removed-with-same-row-or-column/
n
块石头放置在二维平面中的一些整数坐标点上。每个坐标点上最多只能有一块石头。
如果一块石头的 同行或者同列 上有其他石头存在,那么就可以移除这块石头。
给你一个长度为 n
的数组 stones
,其中 stones[i] = [xi, yi]
表示第 i
块石头的位置,返回 可以移除的石子 的最大数量。
示例 1:
输入:stones = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]]
输出:5
解释:一种移除 5 块石头的方法如下所示:
1. 移除石头 [2,2] ,因为它和 [2,1] 同行。
2. 移除石头 [2,1] ,因为它和 [0,1] 同列。
3. 移除石头 [1,2] ,因为它和 [1,0] 同行。
4. 移除石头 [1,0] ,因为它和 [0,0] 同列。
5. 移除石头 [0,1] ,因为它和 [0,0] 同行。
石头 [0,0] 不能移除,因为它没有与另一块石头同行/列。
示例 2:
输入:stones = [[0,0],[0,2],[1,1],[2,0],[2,2]]
输出:3
解释:一种移除 3 块石头的方法如下所示:
1. 移除石头 [2,2] ,因为它和 [2,0] 同行。
2. 移除石头 [2,0] ,因为它和 [0,0] 同列。
3. 移除石头 [0,2] ,因为它和 [0,0] 同行。
石头 [0,0] 和 [1,1] 不能移除,因为它们没有与另一块石头同行/列。
示例 3:
输入:stones = [[0,0]]
输出:0
解释:[0,0] 是平面上唯一一块石头,所以不可以移除它。
提示:
1 <= stones.length <= 1000
0 <= xi, yi <= 104
- 不会有两块石头放在同一个坐标点上
思路:如果我们将同行同列抽象成在无向图中的互通关系,整个矩阵就可以被我们抽象成几个连通分量,而对于每个连通分量,我们都有办法一直删除到只剩下一个点。于是 可以删除的点的个数 = 总点数 - 集合个数。在代码中,我们选择另一种实现方式:如果每次合并两个集合,那么可以删除的点就增加1,对于集合的维护我们自然就会想到用并查集来实现。现在我们来探讨一下如何将一个连通分量删除到只剩下一个点:
简单情形:
如上图所示,B、C、D、E都与A相连,因此通过A使得他们相连关联,我们可以将点删除到只剩下点A。
复杂情形:
我们可以这样看上图:B、C、E以A为核心,F、G以D为核心,因此这两个子集合都可以删除非核心点,于是上图可以简化为:
这时候我们发现,一个符合题目要求的关系的集合,都可以是这样一种递归定义的方式,子集合套子集合,最后一定可以留下一个核心点;事实上我们可以按照深度优先遍历的方式遍历连通分量,最后逆序输出,就可以将联通分量删除到只剩下一个点了。
class Solution {
public:
int Father[1010];
vector<int> Col[10010], Row[10010];
unordered_set<int> ColIndex, RowIndex;
int Find(int x){
return x == Father[x] ? x : Father[x] = Find(Father[x]) ;
}
void Union(int A,int B,int &ans){
A = Find(A);
B = Find(B);
if(A != B){
++ ans;
Father[A] = B;
}
}
int removeStones(vector<vector<int>>& stones) {
int n = stones.size(), i, x, y, index, root, ans = 0;
for(i = 0; i < n; ++ i){
x = stones[i][0], y = stones[i][1];
Father[i] = i;
Row[x].push_back(i);
RowIndex.insert(x);
Col[y].push_back(i);
ColIndex.insert(y);
}
unordered_set<int>::iterator iter;
for(iter = RowIndex.begin(); iter != RowIndex.end(); ++ iter){
index = *iter;
n = Row[index].size();
root = Row[index][0];
for(i = 1; i < n; ++ i){
Union(root, Row[index][i], ans);
}
}
for(iter = ColIndex.begin(); iter != ColIndex.end(); ++ iter){
index = *iter;
n = Col[index].size();
root = Col[index][0];
for(i = 1; i < n; ++ i){
Union(root, Col[index][i], ans);
}
}
return ans;
}
};