959. 由斜杠划分区域

959. 由斜杠划分区域

链接:https://leetcode-cn.com/problems/regions-cut-by-slashes/

在由 1 x 1 方格组成的 N x N 网格 grid 中,每个 1 x 1 方块由 /\ 或空格构成。这些字符会将方块划分为一些共边的区域。

(请注意,反斜杠字符是转义的,因此 \ 用 "\\" 表示。)。

返回区域的数目。

 

示例 1:

输入:
[
  " /",
  "/ "
]
输出:2
解释:2x2 网格如下:

示例 2:

输入:
[
  " /",
  "  "
]
输出:1
解释:2x2 网格如下:

示例 3:

输入:
[
  "\\/",
  "/\\"
]
输出:4
解释:(回想一下,因为 \ 字符是转义的,所以 "\\/" 表示 \/,而 "/\\" 表示 /\。)
2x2 网格如下:

示例 4:

输入:
[
  "/\\",
  "\\/"
]
输出:5
解释:(回想一下,因为 \ 字符是转义的,所以 "/\\" 表示 /\,而 "\\/" 表示 \/。)
2x2 网格如下:

示例 5:

输入:
[
  "//",
  "/ "
]
输出:3
解释:2x2 网格如下:

 

提示:

  1. 1 <= grid.length == grid[0].length <= 30
  2. grid[i][j] 是 '/''\'、或 ' '

思路:本题如果直接考虑/和\是很难做的,因为这两者直接存在重合部分:

因此我们不如就从这个重合部分出发,将每一个小方格划分成四个部分:

于是这个题目可以分为两步:

1. 单元格内的三角形合并

A. / 型  此时单元格内应该合并 0-1,2-3

B. \ 型  此时单元格内应该合并 0-3,1-2

c. 空格 型  此时单元格内应该合并 0-1-2-3

2. 单元格之间的合并(为了不重复合并操作,我们可以向左向上或者向右向下)

A.向左合并

可以看到,实际上不管是三种图形中的哪一个,都可以向左合并,合并块始终是3(左)-1(右)

B.向上合并

请读者自行分析,分析后的结果只需要合并2(上)-0(下)。

注:三角形块索引转换 index = ( i * N + j ) * 4 + which。

class Solution {
public:

    int Father[4 * 30 * 30 + 10];

    int Find(int x){
        return x == Father[x] ? x : Father[x] = Find(Father[x]);
    }

    void Union(int A, int B, int& sum){
        A = Find(A);
        B = Find(B);
        if(A != B){
            -- sum;
            Father[A] = B;
        }
    }

    int regionsBySlashes(vector<string>& grid) {
        int N = grid.size(), i, j, sum = 4 * N * N,grid0,grid1,grid2,grid3;
        for(i = 0; i < N; ++ i){
            for(j = 0; j < N; ++ j){
                // 空格-4个子块均相连
                grid0 = (i * N + j) * 4 + 0; 
                Father[grid0] = grid0;
                grid1 = (i * N + j) * 4 + 1;
                Father[grid1] = grid1;
                grid2 = (i * N + j) * 4 + 2;
                Father[grid2] = grid2;
                grid3 = (i * N + j) * 4 + 3;
                Father[grid3] = grid3;
                switch(grid[i][j]){
                    case '/':Union(grid0, grid1, sum);
                            Union(grid2, grid3, sum);
                            break;
                    case '\\':Union(grid0, grid3, sum);
                            Union(grid1, grid2, sum);
                            break;
                    case ' ':Union(grid0, grid1, sum);
                            Union(grid0, grid2, sum);
                            Union(grid0, grid3, sum);
                            break;
                }
                // 向左向上连接
                if(j > 0){ // 向左
                    Union(grid1, (i * N + j - 1) * 4 + 3, sum);
                }if(i > 0){ // 向上
                    Union(grid0, ((i - 1) * N + j) * 4 + 2, sum);
                }
            }
        }
        return sum;
    }
};

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页