概率不等式

1.马尔可夫不等式

我们有一个概率密度图如下:

P(X>=a)<=\frac{E(X)}{a},x>=0,a>0

证明:由x>=0x>=a可得

\frac{x}{a}>=1

那么显然会有

P(X>=a)=\int_{a}^{+\infty}1*f_X(x)dx<=\int_{a}^{+\infty}\frac{x}{a}*f_X(x)dx=\frac{1}{a}\int_{a}^{+\infty}xf_X(x)dx

根据期望的公式,有

E(\frac{X}{a})=\frac{1}{a}E(X)=\frac{1}{a}\int_{-\infty}^{a}xf_X(x)dx+\frac{1}{a}\int_{a}^{+\infty}xf_X(x)dx

由于密度函数一定是非负值函数,因此必有

\frac{1}{a}\int_{-\infty}^{a}xf_X(x)dx>=0

所以有

E(\frac{x}{a})>=\frac{1}{a}\int_{a}^{+\infty}xf_X(x)dx

P(X>=a)<=\int_{a}^{+\infty}\frac{x}{a}*f(x)dx

故可得

P(X>=a)<=E(\frac{x}{a})=\frac{E(x)}{a}

2.切比雪夫不等式

P\{|X-E(X)|>=\varepsilon \}<=\frac{\sigma ^2}{\varepsilon ^2}

P\{|X-E(X)|<\varepsilon \}<=1-\frac{\sigma ^2}{\varepsilon ^2}

证明:将|X-\mu |代为马尔可夫不等式中的|X|,可得

P(|x-\mu |>=a)<=\frac{E(|x-\mu |)}{a}

为了去掉绝对值,我们进行平方,则有

P((x-\mu)^2>=a^2)<=\frac{E((x-\mu)^2)}{a^2}

由于\mu是均值,因此可以发现

E((x-\mu)^2)=D(x)=\sigma ^2

因此可以得到

P((x-\mu)^2>=a^2)<=\frac{\sigma ^2}{a^2}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值