【视频中的关键帧提取】Deep Keyframe Detection in Human Action Videos

Deep Keyframe Detection in Human Action Videos

2018年发表,conclusion说是第一篇行为识别中用深度学校方法提取关键帧的文章。

这篇的做法使用UCF101数据集在没有关键帧标注下完成,使用LDA做标注,再用双流卷积网络去拟合LDA。

用LDA生成标注:每一类视频双流VGG16提取特征拼接在一起,经过LDA,用1类对其他所有类的方式生成LDA矩阵,经过下面这个公式,得到帧级别的标注分数。

F i,m 表示第m个视频,i个帧的特征,W A表示A类的LDA矩阵,得到的f i,m表示这一帧的关键性分数。思想可以表达为,如果特征与属于同一类别的特征非常相似,并且与其他类别的特征不同,那么它们就属于动作的关键部分,LDA增加类间方差,减小类内方差,正好可以代表,和TF-IDF思想一致。

有了f i,m做label之后,用卷积网络拟合

VGG-16从fc7连在一起,经过fc8,由于最后是一个回归任务,所以加一个regression layer而不是softmax。

紫色点,局部极大值被标为key frame。

关于评价方法,文章中说还没有固定的评价方法和基线,所以设计了关键帧数和关键帧时间差两个指数来进行评价,没有验证用于行为识别是否有提高。

启发:这篇文章在只有类别标注的条件下用LDA区分关键帧,思路很有说服力,也可以辅助把行为二次划分为一些动作,例如跳高从关键帧可以分助跑、起跳、过杆等。

参考:https://zhuanlan.zhihu.com/p/38289781

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值